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ABSTRACT

Design criteria and planning guidelines for qualified engineers are presented
for design of coastal structures. Section 1 is a presentation of applicable
wave theory and wave transformations. Section 2 includes criteria for the
selection of design waves. Section 3 gives general planning and structural
design principles. Section 4 presents design procedures for rubble-mound
structures. Section 5 is a discussion on wave forces on walls and wall design
procedures. Section 6 includes applications of floating breakwaters. Section
7 is a discussion of wave forces on cylindrical piles.
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FOREWORD

This design manual is one of a series developed from an evaluation of
facilities in the shore establishment, from surveys of the availability of
new materials and construction methods, and from selection of the best design
practices of the Naval Facilities Engineering Command, other Government
agencies, and the private sector. This manual uses, to the maximum extent
feasible, national professional society, association, and institute standards
in accordance with NAVFACENGCOM policy. Deviations from these criteria should
not be made without prior approval of NAVFACENGCOM Headquarters (Code 04).

Design cannot remain static any more than can the naval functions it serves
or the technologies it uses. Accordingly, recommendations for improvement are
encouraged from within the Navy and from the private sector and should be
furnished to NAVFACENGCOM Headquarters (Code 04). As the design manuals are
revised, they are being restructured. A chapter or a combination of chapters
will be issued as a separate design manual for ready reference to specific
criteria.

This publication is certified as an official publication of the Naval
Facilities Engineering Command and has been reviewed and approved in accord-
ance with SECNAVINST 5600.16.

W. M. Zobel

Rear Admiral CEC, U. S. Navy
Commander

Naval Facilities Engineering Command
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COASTAL PROTECTION
SECTION 1. INTRODUCTION

1. SCOPE. This manual presents basic information required for the design of
coastal protective structures.

2. CANCELLATIONS. This manual, NAVFAC DM-26.2, Coastal Protection, cancels
and supersedes Chapter 2 of the basic Design Manual 26, Harbor and Coastal
Facilities, dated July 1968, and Change 1, dated December 1968.

3. RELATED CRITERIA. Certain criteria related to coastal protection appear
elsewhere in the design manual series. See the following sources:

Subject Source

Cargo Handling Facilities DM-25.3, DM-38
Channel Layout DM-26.1
Clear Width of Slips Between Piers, Length
of Berth, and Width of Piers DM-25.1
Coastal Sedimentation and Dredging DM-26.3
Harbors DM-26.1
Operational Structures

Piers and wharves DM-25.1

Ferry slips, degaussing and
deperming facilities, and

small-craft berths DM-25.5
Port Control Offices DM-23
Quayage Requirements DM-25.1
Seawalls, Bulkheads, and Quaywalls DM-25.4
Soil Mechanics, Foundations, and Earth
Structures DM-7
Utilities DM-3, DM-4,

DM-5, DM-25.2
4. GENERAL.

a. Approaches. Waves can be described by deterministic or by spectral
theories. In the deterministic approach, the properties of a single wave are
used for design. In the spectral approach, the random nature of waves is
taken into account. The state-of-the-art of incorporating the spectral
approach into engineering is rapidly developing. However, the deterministic
approach is presently in widest use in the United States and is the approach
which will be followed in the manual. Methods are presented to take into
account some of the random properties of wave systems.

b. Wave Classifications. Gravity waves are primarily classified as seas
or swell. Seas are waves caused by the wind at the place and time of
observation. Swell are waves that have traveled out of the area in which they
were generated. Other wave classifications include ship-generated waves,
astronomical tides, storm surges, harbor seiches, tsunamis, capillary waves,
and internal waves. However, the primary wave considered in the design-of
coastal structures is the wind-generated gravity wave having a period ranging
from about 1 to 30 seconds.
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5. WAVE THEORY. Most coastal engineering design procedures rely on the
application of the linear, or "Alry," wave theory, aided by empirically
developed procedures for specific design applications. Linear or "Airy"
theory provides a first-order approximation to the complete mathematical
description of a wave, whereas nonlinear wave theory provides a higher order
of approximation. Unfortunately, the higher order of approximation requires a
significantly larger mathematical and computational effort. Hence, linear
wave theory is often used to the limit of its accuracy. In certain cases,
such as wave forces on piles, more sophisticated wave theories are used to
account for nonlinear properties of water waves.

6. WAVE PARAMETERS.

a. Definitions. The wave height, H, is the vertical distance between the
crest and trough. The wavelength, L, is the distance between two successive
wave crests. Wave period, T, is the elapsed time required for two successive
wave crests to pass a given point. Wave celerity, or phase velocity, C, 1is
given by L/T. The group velocity, CUg.;, is the velocity at which the wave
group propagates. [eta] is the water-surface elevation at a given point
relative to the still water level (SWL), and a is the amplitude, which is
equal to H/2. Another useful parameter is the wave steepness, H/L. See Figure
1 for a definition of terms.

b. Relative Depth. Waves can be categorized as shallow-water waves,
transitional-water waves, or deepwater waves, depending upon the value of the
dimensionless parameter, d/L (relative depth), where d is the still water
depth; still water depth is the depth in the absence of waves. Table 1
presents mathematical expressions, categorized by relative depth, for various
wave parameters. Throughout the text, the subscript "o" refers to the
deepwater value of a wave parameter.

EXAMPLE PROBLEM 1
Given: a. Wave height, H 10 feet

b. Water depth, d 20 feet
c. Wavelength, L = 100 feet

Find: Wave steepness, H/L, and relative depth, d/L.
Solution: H/L - 10/100 = 0.100
d/L 20/100 = 0.200
c. Wavelength. The wavelength, L, for a given water depth, d, can be
determined graphically by first computing the deepwater wavelength, L , from:
LUo¢ = (g/2[pi]) TA2U (1-1)
WHERE: LUo¢ = deepwater wavelength, in feet
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g gravitational acceleration (32.2 feet per secondA2U)

T = wave period, in seconds

The value thus determined for LUo¢is used to determine d/LUo¢. Figure 2
gives the value of d/L and other parameters as a function of d/LUo¢. The
other parameters will be discussed later. (More accuracy can be obtained by
the use of Table C-1 of Appendix C, Shore Protection Manual (1977) (SPM), or
by the use of tables found in other wave-theory texts. However, adequate
accuracy in most design situations can be obtained by the use of Figure 2.)
From Figure 2, the value of d/L for the determined value of d/LUo; may be
found; from d/L, the L for the given depth, d, may be calculated. The hyper-
bolic functions tank(x), sinh(x), and cosh(x), which need to be computed for
many of the equations found in Table 1, may be found in Figure 3.

EXAMPLE PROBLEM 2

10 seconds
20 feet

Given: a. Wave period, T
b. Water depth, d

Find: Wavelength, L, for d = 20 feet

Solution: (1) Using Equation (1-1), find the deepwater wavelength:
LUo¢ = (g/2[pi]) TA2U = (32.2/2[pi])(10)A2U = 512 feet
(2) Determine d/LUog:
d/LUo; = 20/512 = 0.039
(3) From Figure 2 for d/LUo; = 0.039:
d/L = 0.082

L = d/70.082 = 20/0.082 = 244 feet

7. WAVE TRANSFORMATIONS. As waves propagate from deep water into intermediate
(transitional) and shallow waters, their properties are transformed. The wave
period is assumed to remain constant during these transformations. The wave
height first decreases relative to the deepwater wave height, HUo;, then
increases rapidly with a decrease in water depth, d, until breaking occurs.
The change in wave height as a function of water depth iIs termed "wave
shoaling.”™ Waves also change height and direction of propagation by wave
refraction. Upon encountering a breakwater, waves propagate into the lee of
the structure by wave diffraction. Waves propagating in deep water over long
distances attenuate in height by dispersion and viscous dissipation. In
transitional and shallow water, waves decay due to breaking, bottom friction,
and percolation. Waves break when the wave steepness, H/L, approaches about
0.14, or when the wave height relative to water depth, H/d, is from 0.70 to
1.2, depending upon bottom slope. Waves also reflect off beaches, shorelines,
and structures.
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The wave height, H, at a given location is the product of the shoaling,
KUs¢, refraction, KUR;, diffraction, K", and decay, KUf;, coefficients, as
given by the equation:

H = KUs¢ KUR¢ K* KUF; HUo¢ (1-2)

WHERE: H = local wave height

KUs¢ = shoaling coefficient
KUR; = refraction coefficient
K* = diffraction coefficient
KUF; = decay coefficient

HUo; = deepwater wave height

Methods for determining the values for these coefficients and breaking wave
heights are presented in the following subsections. The maximum value of H is
limited by breaking.

a. Wave Shoaling.

(1) Linear Shoaling. The change in wave height due to a wave entering
transitional or shallow water can be determined by application of the
shoaling coefficient, KUs; = H/H"Uo;, where H"Uo; represents the equivalent
deepwater wave height if the wave had been unaffected by refraction (H"Uo¢ =
HUo¢ KUR¢). Figure 2 shows a plot of the first-order approximation of the
linear shoaling coefficient, H/H"Uo;, as a function of d/LUo;.

(2) Nonlinear Shoaling. As the wave approaches very shallow water
several wavelengths seaward of breaking, shoaling becomes highly nonlinear,
and the linear shoaling coefficient may significantly underpredict the wave
height, especially for long waves in shallow water. Figure 4 gives an
approximation of the nonlinear shoaling coefficient, KUsNL¢;, for values of
deepwater wave steepness, H"Uo¢/LUo¢, versus relative depth, d/LUo¢. The
lines of slope, m, are used to determine whether breaking has occurred for
the given set of conditions. Also plotted on Figure 4 is the linear shoaling
coefficient, KUs¢, which is given by the curve denoted m = 0. This graph
should be used as a check to determine the relative importance of nonlinear
properties on the shoaling of a given wave. Figure 4 plots the nonlinear
shoaling coefficient, KUsNL¢, as a function of d/LUo¢ for isolines of
H*Uo¢/LUo¢ . To Find an appropriate shoaling coefficient, enter the abscissa
of Figure 4 with a given value of d/LUo;. Proceed, extending a vertical line
from the d/LUo¢ value, until intersection with the given value-of H"Uo¢/LUo; .
If the lines do not intersect and the H"Uo¢/LUo; value lies to the let of the
d/LUo¢, value, then the nonlinear properties of the wave are not affecting
wave shoaling in the given water depth; in that case, the linear shoaling
coefficient, KUs;, denoted by the m = 0 line, would be used. If the lines do
not intersect and the H"Uo¢/LUo¢, value lies to the right of the given d/LUo
value, then the wave has already broken in deeper water. Where the line
extending from the given d/LUo¢; and the given H"Uo;/LUo¢ do intersect, a
horizontal line is extended to the ordinate to obtain type value of the
nonlinear shoaling coefficient, KUsNL(.
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However, i1f the given value of m lies below the intersection of the given
d/LUo¢, and H"Uo¢/LUo¢ , then the wave has broken and the wave will not shoal
as high as the KUsNL¢ value indicates. If the given value of m lies above the
intersection of given d/LUo; and H"Uo¢/LUo¢, then the indicated KUsNL¢ should
be used. The lines labeled with various values of slope (in addition to m =
0) indicate the breaking limits (indices) for a given m, d/LUo¢, and
H*Uo¢/LUo¢ . The wave cannot shoal past the breaking limit for a given bottom
slope, m. The wave shoals to higher breaking limits for steeper slopes. The
region of validity of Figure 4 is restricted to the region just prior to
breaking. Figure 4 is a semiempirical plot based on breaking indices
described in Subsection 1.6.e, Wave Breaking, and on theoretical nonlinear
shoaling curves. The KUsNL¢ is only an approximation to account for the
discrepancy between linear shoaling and empirical breaking indices.
Application of Figure 4 is illustrated in Example Problem 3.

EXAMPLE PROBLEM 3

Given: a. Case I: HUo;, = 10 feet, T = 12 seconds, d = 11.8 feet,
m = 0.033, KUR¢ = 0.74

b. Case Il: HUo;, = 5.75 feet, T = 15 seconds, d = 5.8 feet,
m = 0.033, KUR¢ = 0.4

c. Case Ill: H=2.5 feet, T = 10 seconds, d = 5.12 feet,
m = 0.033

Find: a. Case I: shallow-water wave height, H, using KUsNL¢
and compare to H obtained using linear KUs; .

b. Case Il: shallow-water wave height, H, using KUsNL(
and compare to H obtained using linear KUs; .

c. Case I111: equivalent unrefracted deepwater wave height,
H*Uo¢,, using KUsNLg .

Solution: a. Case 1I:
(1) Using Equation (1-1), find LUo¢:
L = (g/2[pi]) TA2U = (32.2/2[pi])(12)A2U = 738 feet
(2) Determine d/LUog:
d/LUos = 11.8/738 = 0.016
(3) Determine H"Uo¢:
H*Uo¢ = HUo¢ KUR¢ = (10)(0.74) = 7.4 feet
(4) Determine deepwater steepness, H"Uo¢/LUog :
H*Uo¢/LUos = 7.4/738 = 0.01
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EXAMPLE PROBLEM 3 (Continued)

(5) From Figure 4 for d/LUo¢ = 0.016, Ho/Lo = 0.01, and m =
0.033:

KUSNL;, = 1.48
THEREFORE: Nonlinear value of H = KUsNL¢ H"Uo¢ = (1.48)(7.4) = 11.0 feet

(6) From Figure 4 for d/LUo; = 0.016, H"Uo¢/LUo¢ = 0.01,
and m = 0 (linear shoaling):

KUs¢ = 1.28
THEREFORE: From linear theory, H = KUs¢ H"Uo¢= (1.28)(7.4) = 9.5 feet

THEREFORE: Nonlinear shoaling predicts a wave height that is 16 percent
greater than that predicted by linear shoaling.

Note: If the slope had been m = 0.02 instead of 0.033, the wave
would have broken at a value of KUsNL¢ = 1.39.

b. Case 1l: (1) Using Equation (1-1), find LUo:

LUo¢ = (g/2[pi]) TA2U = (32.2/72[pi])(15)A2U = 1,153 feet
(2) Determine d/LUog:

d/LUos = 5.75/1,153 = 0.005

(3) Determine H"Uo¢:

H*Uo¢ = HUo¢ KURe = (5.75)(0.4) = 2.3 feet

(4) Determine deepwater steepness, H"Uo¢/LUog :

H*Uo¢/LUo¢ = 2.3/1,153 = 0.002

(5) From Figure 4 for d/LUo; = 0.005, H"Uo¢/LUo¢ = 0.002,
and m = 0.033:
KUSNL;, = 2.33

THEREFORE: Nonlinear value of H = KUsNL¢ H"Uo¢ = (2.33)(2.3) = 5.36 feet

(6) From Figure 4 for d/LUo; = 0.05, H"Uo¢/LUo¢ = 0.002, and
m = O:

KUs¢ = 1.69
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EXAMPLE PROBLEM 3 (Continued)
THEREFORE: From linear theory, H = KUs¢ H"Uo¢ = (1.69)(2.3) = 3.89 feet

THEREFORE: Nonlinear shoaling predicts a wave height that is 38 percent
greater than that predicted by linear shoaling.

c. Case lll: to determine the value of H"Uo¢ requires an
iterative process. First assume a value of H"Uoi/LUo¢; at the
intersection of d/LUo¢, line and assumed H"Uo¢:/LUo¢ read value of
KUsNL¢,; compute H"Uo¢ from assumed H"Uo¢/LUo¢ and LUo¢; use
KUsNL¢, and H"Uo; to get a value of H; compare computed H to
actual valuegof H. Repeat the process until the computed H con-
verges with the actual H. Calculate H"Uo; from the assumed
H"Uo¢/LUo¢, which yielded the actual H.

(1) Using Equation (1-1), find LUo¢:

LUo¢= (g/2[pi]) TA2U = (32.2/2[pi])(10)A2U = 512 feet

(2) Determine d/LUoq:

d/LUos = 5.12/512 = 0.010

(3) First, try H"Uo¢/LUo¢ = 0.004:

From Figure 4 for d/LUo¢ = 0.01, H"Uo¢/LUo¢ = 0.004, and
m = 0.033:

KUSNL¢= 1.57

H*Uo¢/LUo¢ = 0.004; H*Uo; = 0.004 LUo; = (0.004)(512) = 2.05 feet

H = KUsNL¢ H"Uos = (1.57)(2.05)

H

3.22 feet; since H = 2.5 feet, H"Uo¢/LUo; = 0.004 is too high
(4) Secondly, try H"Uo¢/LUo¢ = 0.003:

From Figure 4 for d/LUo¢ = 0.01, H"Uo¢/LUo¢ = 0.003, and
m = 0.033:

KUSNL¢= 1.53

H"Uo¢/LUo¢ = 0.003; H"Uog = (0.003)(512) = 1.54 feet

T
1

KUsNL¢, H"Uo¢ = (1.53)(1.54)

H = 2.36 feet; since H = 2.5 feet, H"Uo¢/LUo¢ = 0.003 is too low
(5) Thirdly, try H"Uo./LUo; = 0.0032:
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EXAMPLE PROBLEM 3 (Continued)

From Figure 4 for d/LUo¢ = 0.01,H"Uo¢/LUo¢ = 0.0032 and
m = 0.033:

KUSNL:= 1.54

H=Uo¢/LUo¢ = 0.003; H*Uo¢ = (0.0032) (512) = 1.64 feet

H = KUsNL¢ H"Uo¢ = (1.54) (1.64)

H

2.53 feet = 2.5 feet

THEREFORE: H"Uo¢; = 1. 64 feet

b. Wave Refraction.

(1) General. Waves are considered to be in deep water for d/LUo; >
1/2; however, when waves propagate into shallower water, the phase velocity,
C, becomes a function of water depth. When the wave crests are at an angle
relative to the bottom depth contours, the wave crests bend, tending to aline
with the depth contours. Figure 5 schematically shows wave refraction over
straight and parallel bottom contours. Waves converge over submarine ridges
and diverge over submarine canyons, as shown in Figure 6 . Wave orthogonals
are imaginary lines drawn perpendicularly to the wave crests which indicate
the direction of wave propagation. When the orthogonals converge, the wave
height increases proportionally with the refraction coefficient, KUR;, which
is a function of q square root of the ratio of orthogonal spacing, KUR; =
HU2¢/HU1; = (bU1l¢/bU2¢)A1/2U. (See Figure 5.) (b = distance between
orthogonals.) Conversely, when the orthogonals diverge, the wave height
decreases.

(2) Importance. Wave refraction and wave shoaling are important wave
transformations that affect structural designs and analyses of beach systems.
Refraction must be considered in design of structures to determine the angle
of wave approach and the change in wave height for waves in transitional and
shallow water. For example, the wave-height distribution along a shoreline
can be greatly influenced by the offshore bathymetry. A harbor entrance
should be located in an area of wave divergence rather than convergence. This
will result in a more protected harbor. Wave refraction should be considered
in determining such things as breakwater armor-unit sizes, wave-induced
forces on piles and other structures, and wave runup. Wave refraction is also
an important phenomenon in studying littoral transport and shoreline
configurations. (See DM-26.3.)

(3) Refraction Over Straight and Parallel Contours. Refraction
effects over a bottom having straight and parallel depth contours can be
calculated by application of Figure 7. The refraction coefficient, KUR;, and
the angle of wave crest relative to the depth contour, a, at a given depth,
d, for a given period, T, can e determined by entering Figure 7 on the
abscissa with a value of d/g TA2U and the ordinate with a deepwater angle of
approach, [alpha]Uo,.
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The local wave height is given by:

H = KUs¢ KUR¢ HUo¢ (1-3)

EXAMPLE PROBLEM 4
Given: a. A beach with straight and parallel contours
b. Incident deepwater wave characteristics:
H =6 feet and T = 10 seconds with wave crests at a 30 deg. angle
relative to the bottom contours
Find: Wave height and direction of wave propagation at d = 30 feet.
Solution: (1) Find d/g TA2U:
d/g TA2U = 30/[(32.2)(10)A2U] = 0.0093
(2) From Figure 7 for [alpha]Uo; = 30 deg. and d/g TA2U = 0.0093:
[alpha] = 17.0 deg. and KUR¢; = 0.95
(3) Find d/LUo¢:
LUo¢ = (g/2[pi]) TA2U= (32.2/2[pi])(10)A2U = 512 feet
d/LUo¢ = 30/512 = 0.0586
(4) From Figure 2 for d/LUo; = 0.0586:
KUs¢ = 1.0
(5) Using Equation (1-3):
H = KUs¢ KUR¢, HUo¢ = (1.0)(0.95)(6) = 5.7 feet
(4) Refraction Over Irregular Bathymetry. Refraction over irregular
bathymetry, such as over submarine ridges and canyons, requires the use of
graphical methods or computer programs. These methods are described in the
Shore Protection Manual (1977).
EXAMPLE PROBLEM 5
Given: Deepwater waves, HUo; = 10 feet, T = 10 seconds from the northeast
entering Main Pass of Diego Garcia. The shoaling coefficient, KUs; =

1.52.

Find: Determine the wave height and angle of incidence at the entrance of a
proposed boat harbor in 10 feet of water.
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EXAMPLE PROBLEM 5 (Continued)

Solution: The project site is shown In Figure 8 with its bathymetry and
refraction diagram. The bathymetry is very complex and the
straight-and-parallel-depth-contour assumption is not
appropriate. The refraction must be solved by graphical
procedures described in the Shore Protection Manual (1977), or by
a computer program.

The solution given in Figure 8 shows a severe refraction of
incident wave energy around the sloping banks of Main Pass. At
the project site, the refraction coefficient is KUR; = 0.22 as
determined by using the distance between orthogonals and the
equation KUR¢; = (bU1,/bU2¢)A1/2U , where bUl¢ is measured in deep
water outside the entrance and bU2; is measured near the deep-
draft wharf. The shoaling coefficient is KUs;, = 1.52. The wave
approaches from the north. The resultant wave height is:

H = KUs¢ KURg HUo¢= (1.52)(0.22)(10)= 3.34 feet

c. Wave Diffraction. Diffraction of water waves occurs when a wave train
is interrupted by a barrier such as the breakwater shown in Figure 9. Waves
propagate into the lee of the breakwater essentially in circular arcs
radiating from the head of the breakwater. Wave heights in the lee, iInside
the geometric shadow, are less than one-half the incident wave height. A
diffraction diagram describes wave-height distribution in the lee of a
breakwater. The diffraction diagram shows isolines of diffraction coeffi-
cients, K", for a given local wavelength and angle of approach. The wave
height in the vicinity of a breakwater is determined by:

H = k" HUig (1-4)
WHERE: H = local wave height (diffracted wave height)
K* = diffraction coefficient
HUi¢; = incident wave height
Note: The effects of refraction and shoaling must also be included.

Waves also reflect off the obstruction, causing an interference pattern on
the seaward side.

(1) Single Semi-Infinite, Rigid, Impermeable breakwater. For a single
breakwater, the diffraction coefficient, K", is a function of the angle of
wave approach relative to the breakwater, [phi] , and wavelength, L, in water
depth, dUs; , at the toe of the breakwater head. Figures 10 through 21 give
diffraction diagrams for a thin breakwater of semi-infinite length in
constant water depth for different angles of wave approach.
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Diffraction diagrams are constructed in polar-coordinate form and consist
of arcs spaced one "‘radius-wavelength unit” apart, and rays, spaced 15 deg.
apart. These arcs and rays are centered at the intersection of the breakwater
head with the stillwater level. The diagrams in Figures 10 through 21 show
the breakwater extending to the right when looking toward the area of
diffraction. (These diagrams are used for a breakwater extending to the left
by simply turning over the diagrams to their opposite sides.) The angle of
wave approach is measured counterclockwise from the breakwater. (This angle
would be measured clockwise for a breakwater extending to the left.) To
adjust a given diffraction diagram to the scale of a given working drawing,
the diagram must be scaled up or down so that one radius-wavelength unit on
the diffraction diagram is equal to one wavelength on the working drawing. A
template overlay of the scaled diffraction diagram is then prepared; thus,
lines of constant K* (isolines) can be easily transferred to the working
drawing.

An example of the use of diffraction diagrams would be to determine the
breakwater length needed to protect a boat basin. Breakwater length is
measured along the breakwater on the diffraction diagram in terms of radius-
wavelength units, which are then converted to feet, using the map scale, to
determine design breakwater length needed to achieve a given K* iIn a given
region in the breakwater®s lee. This procedure is outlined in Example Problem
6.

In the use of diffraction diagrams, wave-crest lines are required to
estimate the combined effects of refraction and diffraction. Wave crests may
be approximated with sufficient accuracy by circular arcs. For a single
breakwater, the arcs will be centered at the intersection of the breakwater
head with the still water level. That part of the wave crest extending into
unprotected water beyond the K* = 0.5 line may be approximated by a straight
line. Caution should be exercised because diffraction diagrams assume a
constant water depth and assume that the breakwater is thin compared with the
wavelength. Refraction effects should be taken into account over rapidly
varying bottom depths. As a general rule, diffraction predominates over the
first three wavelengths; then, iIf the bottom varies rapidly, refraction
should be considered.

EXAMPLE PROBLEM 6
Given: a. Incident wave: HUi; = 5 feet
T = 10 seconds
[phi] = 75 deg.-
b. Depth at breakwater toe, dUs; = 20 feet
c. See Figure 22 for map of boat basin layout; scale on this layout

is 1 inch = 600 feet.

Find: Length of breakwater required to protect a boat basin by maintaining
wave heights at less than 1.5 feet in the berthing area.

Solution: (1) Find the wavelength, L, at the toe of the breakwater head,
where dUs; = 20 feet:

26.2-32
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EXAMPLE PROBLEM 6 (Continued)

L = (g/2[pi]) TA2U = (32.2/2[pi])(10)A20 = 512 feet

dUs¢/LUo¢ = 20/512

0.0391
From Figure 2 for dUs¢/LUo¢ = 0.0391:
dUs¢/L = 0.0822

THEREFORE: L = 20/0.0822 = 243 feet

(2) The scale of the basin layout map is 1:600; that is, 1 inch =
600 feet. Therefore, the wavelength, L = 243 feet, is 0.4 inches
on the map. This 0.4 inches represents one radius-wavelength
unit.

The diffraction diagram is scaled so that one radius-wavelength
unit on the diagram is equal to one wavelength (0.4 inches) on
the map.

Figure 14 is the diffraction diagram used ([phi] = 75 deg.). An
overlay of the scaled Figure 14 was prepared and laid over the
basin layout to produce Figure 22.

(3) Desired K" = H/HUi¢ = 1.5/5 = 0.30. The K" = 0.30 line of the
overlay should not intersect the berthing area. The length of the
breakwater required to keep the K* = 0.30 line from intersecting
the berthing area is thus determined to be nine radius-wavelength
units.

1 radius-wavelength unit = 0.4 inches

THEREFORE: 9 radius-wavelength units = (9)(0.-4) = 3.6 inches
Map scale is 1 inch = 600 feet.

THEREFORE: 3.6 inches = (3.6)(600) = 2,160 feet

Therefore, the required breakwater length is 2,160 feet.

(2) Gap Width Less Than Five Wavelengths at Normal Incidence. The
determination of diffraction when the breakwater-gap width, B, is less than
five wavelengths is more complex than that for a single, semi-infinite
breakwater. A separate diagram must be drawn for each ratio of gap width to
wavelength, B/L. The diagram for a B/L ratio of 2, shown in Figure 23,
illustrates a symmetrical diagram, with the wave crests drawn on it for the
purpose of illustrating its use. Figures 24 through 33 show lines of equal
diffraction coefficients for B/L ratios of 0.50, 1.00, 1.41, 1.64, 1.78,
2.00, 2.50, 2.95, 3.82, and 5.00, respectively. Unlike Figure 23, only one-
half of the diffraction diagram is presented on each figure of Figures 24-33;
the diagrams are symmetrical about the line x/L = 0.
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Wave crests to about six wavelengths may be approximated by two arcs
centered on the head of each breakwater and connected by a smooth curve
(approximated by a circular arc entered at the middle of the gap). Crests
that are more than eight wavelengths behind the breakwater may be approxi-
mated by an arc centered at the middle of the gap.

(3) Gap Width Greater Than Five Wavelengths at Normal Incidence.
Where the breakwater-gap width is greater than five wavelengths, the
diffraction effects about each breakwater are nearly independent. The diagram
(see Figure 15) for a single breakwater with a 90 deg. wave-approach angle
may be used to define the diffraction characteristics in the lee of both
breakwaters. (See Figure 34.)

(4) Gap at Oblique Incidence. When waves approach at an angle to the
axis of a breakwater, the diffracted wave characteristics differ from those
resulting when waves approach normal to the axis. An approximate
determination of diffracted wave characteristics may be obtained by con-
sidering the gap to be as wide as its projection in the direction of incident
wave travel, B", as shown in Figure 35. Calculated diffraction diagrams for
wave-approach angles of 0 deg., 15 deg., 30 deg., 45 deg., 60 deg., and 75
deg. are shown in Figures 36 through 41, respectively. Use of these diagrams
will give more accurate results than the approximation method.

d. Wave Decay. Waves leaving theilr generating area radiate energy
laterally through angular spreading. Waves also decay by viscous dissipation
as they propagate out of their generating area. A general rule of thumb is
that a wave loses one-third of its height when the distance in nautical miles
it travels equals the wavelength in feet. Thus, short-period waves die out
more rapidly than longer-period waves. Other factors, such as winds,
currents, and other wave systems, modify waves that propagate out of their
generating area. Waves propagating over shallow water decay by bottom
friction and percolation. (Refer to Ippen (1966) for determination of decay
due to bottom friction and percolation.) Only in special cases are reductions
due to bottom friction and percolation used in design practice. Neglect of
these energy-reducing factors should lead to a conservative design. Bottom
dissipation effects are accounted for in Subsection 3, WAVE HINDCASTING, in
Section 2.

e. Wave Breaking.

(1) Limiting Factors. Waves become unstable and break when either the
wave steepness, H/L, is > / = 0.142, or the wave height relative to the
water depth, H/d, is on the order of unity.

(2) Depth of Water at Breaking and Breaking-Wave Height. The depth of water
at breaking, dUb;, and the breaking-wave height, HUb;, are functions of the
bottom slope, m, an the wave steepness, H/L. The relative breaker 2 height,
HUb¢/HUo¢,, can be found from Figure 42 for the given values of H"Uo;/g TA2U
and slope, m. (Where the bottom slope varies, choose a representative
composite slope for about one wavelength seaward of the breaking point.) The
relative breaker depth, dUb¢; /HUb¢, can then be determined from Figure 43 for
the appropriate HUb;/g TA2U and slope, m. For a flat bottom, the breaking-
wave height, HUb¢, is equal to 0.78 dUbg.
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EXAMPLE PROBLEM 7
Given: a. H"Uo; = 10 feet
b. T = 10 seconds
c. Bottom slope, m = 0.02

Find: The breaker height, HUb;, and breaker depth, dUby .
Solution: (1) Compute H"Uo¢/g TA2U = 10/[(32.2)(10)] A2U = 0.00311

(2) From Figure 42 for H"Uoc,/g TA2U = 0.0031 and m = 0.02:
HUb¢,/ZH"Uog,

Then HUb¢ = 1.2 H"Uo¢ = (1.2) (10) = 12 feet

(3) Find HUbi/g TA2U:

HUb¢/g TA2U = 12/ [(32. 2) (10)A20] = 0.00373

(4) From Figure 43 for HUb¢/g TA2U = 0.0037 and m = 0.02:

dUb¢/HUbg, = 1.13

Then dUbg = 1.13 HUbg = (1.13) (12) = 13.6 feet

Note: Experimental data were used to develop Figure 43. Breaking waves
exhibit a great deal of scatter both in nature and in the model. An
upper limit of relative breaker depth, dUb¢/HUb¢, is given to
indicate at what depth the given wave may start breaking. In this
example problem, dUb¢/HUb; (max) = 1.5; therefore, dUb; = (1.5) (12)
= 18 feet.

(3) Design Wave Height. Waves propagating over a sloping bottom
travel a distance of approximately five wave heights (5 HUb¢) during the
breaking process. In general, larger waves can break in he deeper water
seaward of a structure. Therefore, a larger wave height seaward of the toe of
a structure should be used for the design wave height in limited-water depth
situations. For waves approaching over a bottom with constant slope, design
wave height should be determined using Figure 44, along with the wave period,
T, and depth from SWL at the structure toe, dUs;. For waves approaching over
an irregularly sloping bottom, either a model study should be conducted, or a
representative wave height at a depth five wave heights seaward of the
structure should be used.

EXAMPLE PROBLEM 8
Given: A breakwater is located in 10 feet of water (dUs; = 10 feet = depth
of water at structure toe). The breakwater is fronted by a 1:20 slope

(m = 0.05). Analysis of the wave climate
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EXAMPLE PROBLEM 8 (Continued)

indicates that waves approach the site with a period, T, of 5 to 15

seconds.
Find: The maximum breaking-wave height, HUb;, at the structure.
Solution: Use T = 5, 10, and 15 seconds

(1) First, calculate HUb;, for T = 5 seconds
Then dUs¢/g TA2U = 10/[(32.2)(5)A2U] = 0.0124
From Figure 44 for dUs; /g TA2U = 0.0124 and m = 0.05:

HUb¢ /dUsg,

0.95

Then HUb¢ = deg. 95 dUs¢ = (0.95)(10)

9.5 feet

(2) Similarly, HUb;, = 12.5 feet for T 10 seconds and

HUb; = 13.5 feet for T = 15 seconds
THEREFORE: Maximum HUb¢ is 13.5 feet.

(3) The maximum wave that can break on the structure has a height
of 13.5 feet. However, if the wave climate is such that a 13.5-
foot breaking wave could never occur, then there is no need to
design for the maximum HUb¢. Therefore, it is necessary in this
problem to see whether at least a 13.5-foot breaking wave is
possible. Check wave-climate data to determine if H"Uo; with T =
15 seconds can form a 13.5-foot breaking wave. For example, if
maximum H"Uo¢ = 8 feet, then:

H*Uo¢/g TA2U = 8/[(32.2)(15)]JA20 = 0.00110
From Figure 42 for H"Uo¢/g TA2U = 0.0011 and m = 0.05:
HUb¢/H"Uo¢, = 1.8
Then HUb¢ = 1.8 H"Uo¢ = (1.8)(8) = 14.4 feet
THEREFORE: A 13.5-foot breaking wave can occur on the structure. (The 14.4-

foot wave will break seaward of the structure and therefore is
not the design wave.) The design wave is HUb¢= 13.5 feet.

8. METRIC EQUIVALENCE CHART. The following metric equivalents were developed

in accordance with ASTM E-621. These units are listed in the sequence in

which they appear in the text of Section 1. Conversions are approximate.
32.2 feet per secondA2U = 9.81 meters per secondA2U
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SECTION 2. DESIGN WAVES

1. GENERAL. A coastal structure should be designed to withstand the wave that
induces the highest forces on the structure over its economic life. As a
general rule of thumb for breakwaters, revetments, and seawalls, the design
wave height is the maximum significant wave height that can occur once in
about 20 years. Economic considerations involved in selecting the design wave
for a given structure must be evaluated in detail. Waves larger than the
significant wave will induce some degree of damage to a rubble-mound
structure. The cost and extent of repairs to the structure, as well as
potential consequences (economic and otherwise) of damage to shore facilities
must be evaluated on an individual basis.

Design waves (that is, design wave height and period) can be determined
by hindcasting procedures or by analysis of wave observations. When possible,
both procedures should be used and the differences between results should be
studied to determine which is the more reliable procedure.

2. WAVE DISTRIBUTION.

a. Significant Wave Height. A given sea will contain many waves differing
in height, period, and direction of propagation. A spectral approach to
design will take some of these variations into account; however, this
approach is not commonly used in the United States at present. The
deterministic approach does involve some spectral considerations when
considering wave-height variations. A representative wave height commonly
used in the deterministic approach to design is the significant wave height,
HUs¢ . The significant wave height is defined below, followed by a listing of
the relationships of other waves in a given sea to the significant height.

(1) HUs¢ = HU1/3¢ = average of highest one-third of all waves;

(2) H = 0.626 HUs; = average wave height;

(3) HU10¢ = 1.27 HUs¢ = average of highest 10 percent of all waves; and
(4) HU1¢ = 1.67 HUs¢ = average of highest 1 percent of all waves.

The wave height reported by observers on ships has been shown to
approximate the significant wave height.

b. Variations in Period or Direction. The wave period is normally taken
as a subjective period associated with a hindcasting procedure. Wave
direction can vary as much as 90 deg. on either side of the principal wind
direction. Variations in period or direction within a given sea condition are
generally not taken into consideration in calculations. However, they should
be considered if the design is critical to minor variations in either one.

3. WAVE HINDCASTING.

a. Hindcast Parameters. Wave hindcasting is the calculation of wave
characteristics that probably occurred in the past based on synoptic wind
data. Wave hindcasting is an art that is continuing to evolve through
theoretical considerations coupled with observations. The important
parameters required to estimate a wave condition for a given storm or wind
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condition are listed below.

(1) Fetch. Fetch, or fetch length, is the area or distance over which
a wind field generates seas. The greater the distance, the larger the waves
and the longer the period will be for given windspeed and wind duration. The
growth of waves (that is, wave heights becoming larger and wave periods
becoming longer) may be limited by fetch length.

(2) Windspeed. Windspeed is the sustained windspeed at 32.8 feet, or
10 meters, above the sea surface.

(3) Direction of Wind. Waves are assumed to propagate with the
direction of the wind. However, seas may propagate up to 45 deg. from the
principal wind direction.

(4) Wind Duration. Waves increase in height and period for given
windspeed and fetch, until they become fully arisen. Thereafter, a further
increase in duration does not increase wave height or period.

(5) Water Depth. Bottom friction and percolation retard the growth of
waves in shallow water.

(6) Decay Distance. Once the waves leave the generating area they
decrease in height and the period increases.

b. Hindcasting Procedure. Hindcasts may be made by inferring wind fields
from synoptic weather charts or by transforming windspeed data from wind
gages. Synoptic weather charts may be obtained from the U.S. Navy Fleet
Numerical Weather Central (FNWC) for a given storm. Usually, several years of
storms must be analyzed. Description of the procedure for use of synoptic
weather charts lies beyond the scope of this manual. (More detailed
hindcasting procedures can be found in the Shore Protection Manual (1977).)
Where the fetch is defined by an enclosed body of water, such as a bay or
lake, and wind observations are available, the procedures outlined below
should be employed.

(1) Windspeed. In order to determine the appropriate windspeed for
use In hindcasting procedures, depending on the type of wind record
available, the following steps should be taken. The result will be the final
adjusted windspeed, UUA;.

(a) Correction for elevation. If the wind is recorded at an
elevation other than 10 meters, then the windspeed at 10 meters, UU10¢, is
determined using the following equation:

10 1/7

ul1oe, = (--) Ulz¢ (2-1)
z

WHERE: UU10¢ = windspeed at elevation of 10 meters

z = elevation of recorded wind, in meters (z must be < 100 meters
for this method to be valid (Bretschneider, 1969))
UUz¢ = windspeed at elevation z



(b) Correction for duration. Recorded windspeeds may vary in
definition. For example, recorded windspeeds may be fastest mile, 5-minute
average, or instantaneous maximum gust. For use in hindcasting, windspeed
must be adjusted so that the average time is equal to or greater than the
minimum duration required for the wind to fully develop the waves. This
involves an iterative procedure which will be discussed in Example Problem 9.
Figure 45 is used to adjust the recorded windspeed of given duration
(adjusted to 10-meter elevation) to the value of windspeed, UUt;, at the
desired duration, where t = wind duration.

cU(tUdesired)¢.,
UU(tUdesired)¢¢ = [ AAAAAAAAAAAAAAAT[UU(tUgiven)¢e (2-2)
cu(tUgiven)¢e
WHERE: UU(tUdesired):¢ = windspeed at desired duration, adjusted for
elevation and duration

t = wind duration

cU(tUdesired)¢¢ = conversion factor (found from Figure 45)
cU(tUgiven)¢ ¢ = conversion factor (found from Figure 45)
UU(tUgiven)¢¢ = windspeed at given duration, adjusted for
elevation
S
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(c) Correction for overland-overwater effects. Windspeed recorded
overland (UUL¢) must be adjusted to obtain the overwater windspeed UUW;. This
can be achieved using the following procedure.

IT the fetch length is less than or equal to 10 miles:

UlWg = 1.1 UUL¢ (For Ffetch length < / = 10 miles) (2-3)

WHERE: UUW; = overwater windspeed

UUL¢ overland windspeed adjusted for elevation and duration
IT the fetch length is greater than 10 miles:
UUW¢ = R UUL¢ (For fetch length > 10 miles) (2-4)

WHERE: R = UUW¢/UUL¢ = ratio of overwater windspeed to overland windspeed
(found from Figure 46)

(d) Correction for nonconstant drag coefficient. Winds must be
adjusted for nonconstant coefficient of drag. This can be accomplished using
the following equations:

U"UA; = 0.608 UUW¢; A1.23U (in knots) (2-5)
2.0
h
Y
1.5 A
z| o
2|3
o
o
FOR U =38 KNOTS
R:0.3
1.0 »
WINDSPEEDS ARE REFERENCE|
[ 0 10-METER LEVEL
0.8 - HH-HHHHHH ;
? S |c 5] 20 25 30 35 40 KNOTS
0 5 10 15 20 25 30 a5 40 45 MILES PER HOUR
OVERLAND WINDSPEED, UL
(AFTER RESIO AND VINCENT,1976)
FIGURE 46
Ratic, R, of Overwater, to Overland, U Windspeed as a Function-

H;erland Windspeeh



Windspeed as a Function of Overland Windspeed, UUL¢]
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or
U"UA¢; = 0.589 UUW¢; A1.23U (in statute miles per hour) (2-6)
WHERE: UUA; = windspeed corrected for nonconstant drag coefficient

UUW¢ = windspeed adjusted for elevation, duration, and overland
overwater effects

IT the fetch length is less than or equal to 10 miles, then no further
adjustment is necessary, and the final adjusted windspeed, UUA;, is:

UUA;, = U"UA; (For fetch length < / = 10 miles)

WHERE: UUA; = final adjusted windspeed used for hindcasting (for fetch
length < /7 = 10 miles)

(e) Correction for air-sea temperature difference. For fetch
lengths greater than 10 miles, an adjustment resulting from the air-sea
temperature difference must be made to the windspeed. If the temperature
difference is specifically known in degrees centigrade, the amplification
ratio, RUT¢, is determined from Figure 47 from known values of air
temperature, TUa¢, minus water temperature, TUs;. The resulting windspeed is:

UUA¢; = RUT¢ U"UA; (For fetch length > 10 miles) -7

WHERE: UUA; = final adjusted windspeed used for hindcasting (for fetch
length > 10 miles)

RUT¢ amplification ratio (found from Figure 47)

UUA,

windspeed adjusted for elevation, duration, overland-overwater
effects, and nonconstant drag coefficient

IT the air-sea temperature difference is not known, the value of RUT; may
be determined by estimating the condition of the atmospheric boundary layer.
IT the air is warmer than the water, then the atmospheric boundary layer is
assumed stable, and UUA; is determined as follows:

UUA¢; = 0.9 U"UA; for stable atmospheric boundary layer (2-8)

IT the air and water are at the same temperature, then the atmospheric
boundary layer is assumed to have neutral stability. UUA; for a neutrally
stable atmospheric boundary layer is determined as follows:

UUA¢; = 1.0 U"UA; for neutrally stable atmospheric boundary layer (2-9)

IT the air is cooler than the water, then the atmospheric boundary layer
is assumed unstable. For an unstable atmospheric boundary layer:

UUA¢; = 1.1 U"UA; for unstable atmospheric boundary layer (2-10)
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(2) Fetch Length. Determine appropriate fetch length, F, by taking
the straight-line distance along the axis of the wind to the opposite shore

or boundary.

(3) Use of Hindcasting Charts. Values of the significant wave height,
HUs¢, and the wave period, TUp; associated with the highest peak of the wave
spectrum, can be determined for a given adjusted windspeed, UUA;, fetch
length, F, water depth, d, and minimum wind duration, t, using the
hindcasting charts presented in Figures 48-58. For water depths greater than
50 feet, wave generation is not greatly affected by depth variations and
Figure 48 is used. For water depths less than or equal to 50 feet, Figures 49
through 58 are used. These hindcasting charts plot fetch length, F, on the
abscissa and adjusted windspeed, UUA;, on the ordinate. Also plotted on the
figures are isolines of significant wave height, HUs;, peak spectral period,

TUP;,, and minimum duration, t.
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Wave conditions (or seas) can be either fetch-limited or duration-
limited. For hindcasting fetch-limited seas, one enters the abscissa with the
fetch length and the ordinate with the adjusted windspeed. Where these
intersect, the values for HUs¢, TUp¢, and t are read from the chart. When
hindcasting from wind observations recorded at an arbitrary duration, the
winds should be adjusted to the duration, t. If hindcasting is carried out
for a particular storm where winds are known to blow for a specific duration,
the duration of the wind must equal or exceed the minimum duration, t, in
order for the waves to reach HUs; and TUp¢; for a given F and UUA;. If the
duration of the wind is less than t, then the seas are termed duration-
limited. To obtain HUs; and TUp¢; for duration-limited seas, one enters the
hindcasting chart ordinate with UUA; and proceeds to the intersection of the
duration value equal to the duration of the storm.

Bathymetry may vary considerably over a large fetch. When the bathymetry
contains extended regions of depths less than or equal to 50 feet, the
average depth, at the design water level (see DM-26.1, Section 2.7., for a
discussion of design water level) may be used. A better approximation for use
in hindcasting waves in variable depths (< /7 = 50 feet) is to divide the
fetch into discrete intervals of constant depth. Then starting with the first
fetch interval, FUl;, hindcast the significant wave height, HUs;, for the
given UUA;, FUl¢, dUl¢, and t. Using the hindcasted value of HUs; at the end
of the first interval and the adjusted windspeed, UUA;, enter the hindcasting
chart for the depth of the next interval, dU2;, and determine the
corresponding fetch length, F"Ul;. This is the fetch length required to
generate HUs¢ if the water depth had been dU2; in the Ffirst interval. To this
fetch length, FUl;, add the fetch length, FU2;, for the second interval; use
the resulting value along with UUA; and dU2; for hindcasting HUs; at the end
of the second interval. Repeat this process for the all the fetch intervals
making up the total fetch length. The peak spectral period, TUp¢, and the
minimum duration, t, are assumed to be the values obtained at the end of the
last fetch interval. The hindcasting procedures are i1llustrated in Example
Problems 9 and 10.

c. Other Considerations. The preceding procedures give estimates of wave
characteristics at the end of the fetch. Refraction, shoaling, diffraction,
wave-breaking, and economical analyses must be performed to determine the
design wave. As the wave propagates out of the generating area, it decays. In
general design calculations, wave decay is not important; however, if the
wave leaves the generating area and travels great distances over shallow
water, wave decay should be considered. The Shore Protection Manual (1977)
gives specific guidance on this topic. Waves from tropical cyclones, known as
hurricanes or typhoons, may be calculated by equations given in the Shore
Protection Manual.

EXAMPLE PROBLEM 9

Given: a. Hourly average windspeed, UUz; = 45 knots, measured over land at
10 feet above the ground (t = 1 hour; z = 10 feet)
b. Water temperature, TUs; = 15 deg. Centigrade and air temperature,
TUa;, = 24.5 deg. Centigrade
c. Fetch length, F = 35 nautical miles
d. Average water depth, d = 75 feet
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EXAMPLE PROBLEM 9 (Continued)

Find: The adjusted windspeed, UUA;, the significant wave height, HUs;,
and peak spectral period, TUp¢.

Solution: (1) Correct for elevation, using Equation (2-1):

ul10¢, = (10/2)A1/7U0 UUz¢

z = (10 feet) (0.3048 meters/foot) = 3.048 meters

UU10¢ = (10/3.048)A1/7U(45) = 53.3 knots

(2) Correct for duration, using Equation (2-2):
The proper duration to use is the minimum duration, t, found from
the hindcasting chart for the given conditions. At this point a
duration must be assumed. After hindcasting, the minimum
duration, t, read from the chart should be equal to the assumed
duration. If not, the process should be reiterated until the
values of duration are equal.

From Figure 48 for UU10¢ = 53.3 knots and F = 35 nautical miles:
t = 4.4 hours = desired duration = tUdesired,

From Figure 45 for t = 4. 4 hours (desired duration):

Conversion factor, CUt; = CU(tUdesired)¢¢ = 0.9,
where t = 4.4 hours;

therefore CU(t = 4.4 hours); = 0.9
From Figure 45 for t = 1 hour (given duration):

Conversion factor, CUt; = CU(tUgiven)¢i¢ = 1.0,
where t = 1 hour;

therefore, CU(t = 1 hour)¢ = 1.0

CU(t = 4.4 hours)¢

UUCt = 4.4 hours)e = [ AAARAAAAARRAAAAAAA 1 [UUCt = 1 hour)¢]
cU(t = 1 hour)¢
0.9
ulte = ( AAA ) (53.3) = 47.97 knots
1.0

(3) Correct for overland-overwater effects:
From Figure 46 for UUt; = UUL¢ = 47.97 knots:
R =0.9
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EXAMPLE PROBLEM 9 (Continued)

THEREFORE:

Using Equation (2-4):

uuwg,

uuwg,

R UULg,

(0.9) (47.97) = 43.17 knots

(4) Correct for nonconstant drag coefficient:

Using
UTUA;

U=UA,

Equation (2-5):

0.608 UUWzAL.23U

(0.608) (43.17)A1.230 = 62.40 knots

(5) Correct for air-sea temperature difference:

TUa¢
TUs¢

TUa¢

24.5 deg. C
15 deg. C

TUs¢, = 24.5 deg. C - 15 deg. C = + 9.5 deg. C

From Figure 47 for TUa;, - TUs¢ = + 9.5 deg. C:

RUT,,

0.82

Using Equation (2-7):

UUA,

UUA,

RUT:, U"UA¢

(0.82) (62.40) = 51.17 knots

(6) Determine HUs;, TUp:, and t:

From
HUs¢,

TUp¢,

Figure 48 for UUA; = 51.17 knots and F = 35 nautical miles:

11.4 feet

7.4 seconds

t = 4.4 hours

Assumed value of t = 4.4 hours was a good value and no further

IT the duration differed considerably then
the new value of t from Figure 48 would be assumed for the
duration of the wind and the process would be repeated until the

iteration iIs required.

answer converged.

26.2-78



EXAMPLE PROBLEM 10

Given: a. Fetch interval, FUl; = 90,000 feet with dUl; = 35 feet
b. Fetch interval, FU2; = 60,000 feet with dU2; = 25 feet
c. Fetch interval, FU3; = 60,000 feet with dU3; = 20 feet
d. Adjusted windspeed, UUA; = 40 miles per hour
Find: The significant wave height, HUs;, at the end of fetch interval,

Solution: For fetch FUl; = 90,000 feet, UUA; = 40 miles per hour, and dUl¢
= 35 feet, use Figure 55:

HUsUl¢s, = 4.2 feet at the end of FU1;

Entering Figure 53 (for dU2; = 25 feet) with UUA; = 40 miles per
hour and HUs; = 4.2 feet:

F*U1l; = 130,000 feet

To obtain HUsU2:¢ at the end of FU2;, enter Figure 53 (for dU2

25 feet) with UUA;, = 40 miles per hour and F = F"Ul¢ + FU2

130,000 + 60,000 190,000 feet:
HUsU2:¢, = 4.5 feet at the end of FU2;

Entering Figure 52 (for dU3; = 20 feet) with UUA; = 40 miles per
hour and HUs; = 4.5 feet:

F=U2; = 420,000 feet

To obtain HUsU3:¢ at the end of FU3;, enter Figure 52 (for dU3

20 feet) with UUA;, = 40 miles per hour and F = F"U2¢ + FU3,

420,000 + 60,000 = 480,000 feet
HUs; = 4.5 feet at the end of FU3¢

4_. SOURCES FOR WAVE OBSERVATION DATA. The U.S. Naval Weather Service Command
conducts a program to publish a Summary of Synoptic Meteorological
Observations (SSMO) based upon shipborne observations. The observations are
given over a specified time period, usually 10 to 30 years, and within a
certain geographical area. Data are presented in tables. Table 18 of the SSMO
gives percent frequency of occurrence of wave height by season and direction
as a function of windspeed. Table 19 of the SSMO gives percent frequency of
occurrence of wave period as a function of wave height. Wave distributions
can be estimated by use of these tables for large geographic areas covering
grids of several degrees. The tables give observed values which are assumed
to be significant heights and periods. However, caution should be exercised
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because ships may avoid waters with high waves and reporters often overlook a
swell condition when a local wind wave obscures the swell. Data sources are
as Tollows:

(@D) In areas where heavy shipping occurs, data may be requested in
specific grids of 1 degree or other larger- or smaller-degree
grids at the National Climatic Center, Federal Building, Ashe-
ville, North Carolina 28801.

@) Another source of wave data is Ocean Wave Statistics by Hogben
and Lumb, London, Her Majesty"s Stationery Office, 1967.

(©)) The U.S. Navy Fleet Numerical Weather Central in Monterey,
California, may be consulted to obtain wave hindcasts for
specific stations where data have been compiled.

() Other sources may include results of wave-gage analyses, as well
as special reports and studies of hindcasts for specific
locations. These must be obtained through a local source or
through a search of available literature.

5. EXTREME WAVES. Selection of the design wave either requires proof that
the wave height is limited by water depth or an analysis to determine the
frequency of occurrence of waves in deeper water. Generally, wave-gage data
sets are limited to 1 to 3 years of data. Shipborne observations may cover a
10- to 30-year range. Synoptic charts of extreme storm events may cover a 20-
to 40-year period or more. The recurrence interval, or period of time that a
given wave height should be exceeded based on statistics of past
observations, is required in order to select the design wave and estimate
damages i1f that wave height be exceeded. The normal procedure is to determine
the percent frequency that the wave heights in the data set are exceeded.
These data are typically plotted on, for example, lognormal, semilog, log-
probability, or normal-probability graph papers. The percent frequency of
exceedence must then be related to a recurrence interval In years. This is
easily done if the maximum storm every year is known, or if a set of extreme
storms in a given period is given. An additional assumption is required if
the data are given in hours or percent occurrence per year. Normal design
procedures use from 3 to 12 hours duration per year for the annual
significant wave. The choice depends upon judging the factors of minimum
duration that are required to develop a fully arisen sea for the design wind
and fetch, the frequency of observations, and the consequences of damage if a
slightly lower design wave is selected.

EXAMPLE PROBLEM 11
Given: Summary of wave statistics for all directions as shown in Table 2.

Find: Draw frequency of exceedence curve for wave height and determine
design 20-, 50-, and 100-year wave heights for all directions.

Solution: Beginning with the second highest wave class (8 to 9 feet),
subtract the cumulative total (99.96) of this wave class from
100. Plot this value (0.04) on semilogarithmic
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EXAMPLE PROBLEM 11 (Continued)

TABLE 2
Percent Frequency of Occurrence for Example Problem 11
(10 years of data; 1,825 observations)

Wave Height (feet).. 0-1 2-3 4-5 6-7 8-9 10

Direction

1 2.50 1.63 0.90 0.01 0.01 0.00

NE.. . oo 5.10 3.20 2.00 0.05 0.01 0.01

8.98 6.51 1.30 0.54 0.12 0.02

SE. ..., 11.22 8.10 1.30 0.03 0.03 0.01

S e 14.61 10.81 0.10 0.02 0.02 0.00

SW. ... 3.92 4.82 0.20 0.10 0.01 0.00

L 3.46 4.00 0.30 0.20 0.00 0.00

NW. oo 2.01 1.33 0.50 0.01 0.00 0.00

Total 51.80 40.40 6.60 0.96 0.20 0.04
Cumulative

Total 51.80 92.20 98.80 99.76 99.96 100.00

paper at the highest wave in that class (H = 9 feet). For the
next wave class (6 to 7 feet), follow the same procedure and plot
this value (0.24) at H = 7 feet. Continue for all wave classes,
and then draw the best possible line through the points. This
line, shown in Figure 59, is the frequency of exceedence curve.

To determine design wave heights, begin by extrapolating the
frequency of exceedence curve back. The following percentages of
occurrence for 20-, 50-, and 100-year storms were calculated
(assuming a duration of 12 hours for a storm):

12 hours
20-year: [ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 1(100) = 0.00685%
days hours
(365 AAAA ) (24 AAAAA ) (20 years)
year day

12 hours
50-year: [ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 1(100) = 0.00274%
days hours
(365 AAAA ) (24 AAAAA )(50 years)
year day

12 hours
100-year: [ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA  1(100) = 0.00137%
days hours
(365 AAAA ) (24 AAAAA )(100 years)
year day

The 20-, 50-, and 100-year design wave heights can be found
directly from the frequency of exceedence curve by reading the



wave height at the respective percentage of occurrence. Thus the
20-, 50-, and 100-year design wave
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EXAMPLE PROBLEM 11 (Continued)

heights are 11.1, 12.2, and 12.9 feet, respectively. (See Figure
59.) It should be noted that in areas of typhoon or hurricane
activity, more detailed studies may be required.

6. SELECTION OF DESIGN WAVES.

a. Selection. The selection of design waves should be related to the
economics of construction, maintenance, and repairs. For small projects, a
20- to 25-year design wave, coupled with an annual extreme water level, is
appropriate. In special cases, such as over a coral reef or in the breaker
zone, the design water level may control the design wave height. (See DM-
26.1, Section 2.7, for a discussion of design water level.)

b. Large Projects. The selection of design conditions for larger
structures requires more detailed consideration of the economics of the
design. Wave analysis yields the recurrence interval of a given wave height.
IT, for example, the design wave height having a recurrence interval of 20
years is 10 feet, then a wave having a 30-year recurrence interval and height
of 15 feet will damage the structure. The economics of increasing the first
cost versus making occasional repairs must be evaluated. Furthermore, cost
and extent of damages to areas that the structure is designed to protect must
also be considered. The physical and economic factors, such as design wave
height versus annual costs, must be optimized.

The principal of optimization is schematically shown in Figure 60, where
annual cost is plotted as a function of design wave height. The plot is made
by designing the structure for a range of wave heights. As the design wave
height increases, Tirst cost of the structure increases. (The First cost must
be related to an annual cost. This is accomplished by amortizing the first
cost by using an appropriate interest rate and time period.) The annual
maintenance cost will decrease if the structure is designed for a larger
wave. This curve is difficult to plot accurately because several arbitrary
decisions must be made concerning how many times in the life of the structure
repairs must be made and how much maintenance costs would be. By making
reasonable assumptions, or at least by incorporating the principal of
optimization into the design, a selection of the design wave can be made by
adding the annual maintenance cost and the annual first cost to produce a
third curve which represents the annual cost of the structure. The designer
then can identify the wave height which represents the least annual cost.
Some of the decisions involved in arriving at this optimum design wave height
are arbitrary and not based on hard data regarding maintenance costs;
therefore, some latitude should be permitted in the selection of the design
wave height using the optimization procedure. If the cost varies 5 to 10
percent, the optimum design wave would have a range of heights. The designer
should use other factors to help select the proper design condition, such as
environmental, operational, and maintenance considerations.
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FIGURE 60
Selection of Optimum Design Wave Height

This procedure need not be strictly employed; however, the designer
should consider the principles involved in selecting the optimum design. Such
an analysis should prevent selection of a 1,000-year return period typhoon
wave for design of a small boat harbor, or a 1l-year return period sea for
design of a cargo-wharf piling system.

c. Wave-Height Variability. Most wave-transformation studies calculate
the significant wave height, HUs;, at the project site. Wave systems have a
wave-height distribution where the significant height is exceeded. The
rigidity of the structure, or its ability to withstand an occasional larger
wave, must be evaluated. Table 3 summarizes general guidance for selecting
the appropriate wave height.
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TABLE 3
General Factors For Wave-Height Selection
UAAAAAAAAARAAAAARAAAARAAAAARAAAAARAAAAARAAAAARAAAAAAAAAARAAAAARAAAAARAAAARRA

3  Type of Structure Wave Height[1] Example 3
AAAAAAAARAARAARAAAAAAAAAARAARAAAAAAAAAAARAARAAAAAAAAAAARAARAAAAAAAAAARAARAARAA”
3Nonrigid: minor damage HUs¢, Rubble-mound breakwaters 3
3 to armor units can be and revetments; pile- 3
3 tolerated without supported structures 3
3 threat to the function of 3
3 the structure 3
3 3
3Semirigid: the structure HU10¢, Cellular sheet-pile walls 3
3 can absorb some excessive 3
3 wave force without 3
3 catastrophic failure 3
3 3
3Rigid: damage may cause HU1¢ Cantilever sheet-pile 3
3 complete failure if the walls; braced sheet-pile 3
3 design wave is slightly walls 3

3

3 exceeded
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL
[1]wave heights are defined in Section 2.2_.a., Significant Wave Height.

7. METRIC EQUIVALENCE CHART. The following metric equivalents were developed
in accordance with ASTM E-621. These units are listed in the sequence in
which they appear in the text of Section 2. Conversions are approximate.

32.8 feet = 10 meters
10 miles = 16.1 kilometers
50 feet = 15.2 meters
10 feet = 3.0 meters
15 feet = 4.6 meters
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SECTION 3. BASIC PLANNING

1. GENERAL. The type of structure required for a particular design situation
depends upon the protection required, such as harbor protection, beach
erosion control, and stabilization of an entrance channel. Table 4 describes
the primary types of coastal structures and their functions. In many cases,
more than one type of structure may provide a possible solution. Studies of
alternative solutions, including consideration of first and annual costs,
maintenance, construction methods, and environmental impacts, should be
conducted to select the most appropriate one. Figures 61 through 67 give
examples of typical uses and construction of each structure type. Selection
of the structure type requires that the foundation condition, availability of
construction materials and equipment, and probable impacts on the adjacent
shores be considered.

2. ENVIRONMENTAL CONSIDERATIONS.

a. Discussion. The Coastal Zone Management (CzZM) Act of 1972, PL 92-583,
establishes a national policy to preserve, protect, develop, and, where
possible, restore and enhance the resources of the coastal zone of the United
States. DOD Instruction 4165.59 of 29 December 1975 authorized the Navy to
implement programs to achieve the objectives of PL 92-583. The Navy will
cooperate and provide information on Navy programs within the coastal zone to
states responsible for developing state CZM plans. Naval operations,
activities, projects, or programs affecting coastal lands or waters shall
insure that such undertakings, to the maximum extent practicable, comply with
state-approved coastal-zone programs.

b. Guidelines and Standards.

(1) All natural resources management programs on naval installations in
the coastal zone have potential effects on the coastal zone and
should be reviewed for consistency with approved state Coastal Zone
Management plans. The Navy shall develop, in cooperation with a
designated state agency, a set of criteria and standards for judging
the consistency of natural resource management programs with respect
to approved state management programs. Consistency determinations
shall be made in accordance with provisions of PL 92-583.

(2) Agricultural outlease of real property affecting land or water uses
in the coastal zone shall provide a certification that the proposed
use complies with the coastal state"s approved program and that such
usage will be conducted in a manner consistent with the program.

(3) Technical assistance requested by the states to assist their
implementation of CZM will be provided to the extent practicable.
Data collected by the Navy on subjects such as beach erosion,
hydrology, meteorology, and navigation may be useful for coastal-zone
planning and shall be made available.
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Artificial Headlands in Coastal Protection]
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FIGURE 66
Typical Rubble-Mound Groin
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Structure

Breakwaters .

Jetties . . .

TABLE 4

Primary Types of Coastal Structures

Revetments, bulkheads,

and seawalls

Groins . . .

Headlands . .

Beach restoration and

nourishment.

Function

Primary applications of breakwaters are to provide
protection against waves for shore areas, harbors,
anchorages, and basins, and to enable maintenance-
dredging operations. A secondary purpose is beach

erosion control.

Jetties are devices parallel to a navigation
channel used to protect the channel from shoaling
with littoral drift and to stabilize the entrance
to a tidal inlet. They may also provide wave and
wind protection and direct or confine the flow of
river or tidal currents. Sand bypassing of jettied
inlets i1s often necessary to preclude erosion of
the downdrift coast.

These structures are used to protect embankments
or shore structures from eroding or from damage
due to wave attack or currents and to retain or
prevent sliding of land. Revetments are generally
rubble construction. Seawalls and bulkheads are
generally more rigid structures constructed of
steel, concrete, or timber. Another design for
seawalls is to use Igloos, patented by Nippon
Tetrapod (see Figure 65). Igloos can be used as
space-saving wave absorbers or breakwaters.
Prefabricated concrete units have been used
successtully as wave-dissipating walls in harbors.

Groins are used to protect the coast from erosion
and to retard or control littoral transport to
stabilize a beach. Groin fields should generally
be filled with imported material to preclude
erosion of the downdrift coast.

Headlands are high, steep-faced border points of
land extending into the ocean or other body of
water. Large segments of shorelines can be
stabilized by construction of artificial head-
lands.

Beaches that are eroding due to an interrupted or
inadequate sand source can be stabilized by
deposition of sand brought from a source on land
or of dredged materials.
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3. FUNCTIONAL DESIGN. To be effective, a breakwater must be built to a high
enough elevation and be impermeable to the extent that waves transmitted to
the lee side are attenuated to acceptable levels. Wave transmission studies
are required to determine appropriate crest elevations. If design criteria
stipulate that a breakwater or revetment is not to be overtopped, wave-runup
studies are required. Wave-runup calculations, coupled with observations at
neighboring structures and beaches, are required to determine the crest
elevation of a structure or the berm elevation of a protective beach. If wave
overtopping can cause flooding or undesirable ponding of water, calculations
of overtopping quantities are required. Methods for calculating wave runup
and transmitted-wave heights are presented herein. Calculation of overtopping
quantities iIs rarely needed; the reader is referred to the Shore Protection
Manual (1977) for details on the proper procedure for such calculations.

4. WAVE RUNUP.

a. Definition. Wave runup, R, is the vertical height above the still
water level to which water from an incident wave reaches when it encounters a
structure or natural formation such as a beach. If the structure is lower in
height than the runup elevation, the structure is overtopped. Figure 68 is a
sketch defining runup and overtopping terms. Runup is a function of the
characteristics of the wave structure and of the offshore slope. Runup on
coastal structures can be calculated from small-scale model studies; however,
adjustments may be necessary to account for model-to-prototype scale effects
and for structure-roughness effects.

b. Calculation of Runup.

(1) General. The calculation of wave runup is based on the results of
small-scale hydraulic model studies. m e model studies were done for special
cases of structures on horizontal bottoms, sloping bottoms, embankments or
revetments, breakwaters with low, medium, or high impermeable cores, and with
quarrystone or concrete armor units. Runup depends on: relative depth at the
toe of the structure, wave steepness, structure slope, beach slope, roughness
of the structure, and relative core heights. The equivalent unrefracted
deepwater wave height, H"Uo¢, is used in all the runup procedures given
below, except for vertical walls subjected to nonbreaking or nonbroken waves.
(In such a case, the incident wave height, HUi¢, is used.) Runup, R, is given

by:
R = (H"Uo¢) (R/ZH"U0¢) () (k) (3-1)
WHERE: R = runup
H"Uo, = equivalent unrefracted deepwater wave height
R/H"Uo¢ = relative runup
r = rough-slope runup correction factor
k = runup scale-effect correction factor

26.2-96



LIMIT OF WAVE RUNUP

L |
H
SWL swL "¢~ °

e w ST
PR L
- .

WHERE. R= RUNUP
©= STRUCTURE-SLOPE ANGLE

hs= HEIGHT OF STRUCTURE

ds= WATER OEPTH AT STRUCTURE TOE

Ho= EQUIVALENT UNREFRACTED DEEP-
WATER WAVE HEIGHT

m:BOTTOM SLOPE
(AFTER SHORE PROTECTION MANUAL, I1977)

FIGURE 68
Definition of Runup and Overtopping Terms
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Runup, R, is the distance above the given water level. The actual runup
elevation is determined by adding the runup, R, to the water level used in
the calculation.

In the subsections which follow, procedures are described for calculating
runup on different types of structures. These procedures were derived from
Stoa (1979). Table 5 summarizes which procedure to follow for a given
situation.

TABLE 5
Wave-Runup Procedures
UAAAAAAAAARAAAAAAAAAARAAAAARAAAAARAAAAARAAAAARAAAAARAAAARAAAAARAAAAARAAAARRA

3Structure Type Armor Type Case Subsection 3
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
3Embankment or revetment. Quarrystone 1 3.4.b.(2) 3
3 3
3Embankment or revetment. Concrete 2 3.4.b.(3) 3
3 3
3Breakwater . . . . . . . Rubble-mound 3
3 Low core 3 3.4.b.(4)(d) 3
3 Medium core 4 3.4.b.(4)(b) 3
3 High core 5 3.4.b.(4)(c) 3
3 3
3Breakwater . . . . . . . Concrete--all co 6 3.4.b.(5) 3
3 3
3Vertical structures. . . Solid 7 3.4.b_(6) 3
3 3
3Beaches. . . . . . . . . Sand to cobble 8 3.4.b.(7) 3

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU

(2) Case 1: Embankment or Revetment, Quarrystone Armor. Wave runup on
an embankment or revetment with quarrystone armor is determined by first
finding the relative runup, R/H"Uo;, from Figures 69-81. The figure to be
used depends upon the slope fronting the structure, cot [theta], and upon the
value of dUs¢/H"Uo¢,. Figures 69-71 are "rough-slope" curves, whereas Figures
72-81 are 'smooth-slope'™ curves. To use these 'smooth-slope'™ curves in deter-
mining runup on the rough slope of a quarrystone embankment or revetment, the
rough-slope runup correction factor, r, is applied.

(a) Structure fronted by horizontal bottom; dUs¢/H"Uo¢ > / = 3
and/or 1.5 < / = cot [theta] < / = 5. Find the relative runup, R/H"Uo;, as a
function of the cotangent of the structure slope, cot [theta], and of the
deepwater wave steepness, H"Uo¢/g TA2U, from Figures 69, 70, or 71, depending
on relative depth, dUs¢/H"Uo¢ . I dUs¢/H"Uo; = 3.0, use Figure 69. If
dUs¢/H"Uo¢, = 5.0, use Figure 70. If dUs¢/H"Uo¢; > / = 8.0, use Figure 71. The
rough-slope runup correction factor, r, and the runup scale-effect correction
factor, k, are both unity. Then the runup is:

R = (H"Uo¢) (R/ZH"U0¢) () (k)

R = (H"Uo¢)(R/H"Uo¢)

(3-2)
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EXAMPLE PROBLEM 12

Given: a. The equivalent unrefracted deepwater wave height, H"Uo; = 10 feet
b. Water depth at structure toe, dUs; = 30 feet
c. Wave period, T = 8 seconds
d. Structure slope, cot [theta] = 1.5

Find: Runup for a quarrystone revetment.

Solution: (1) Find dUs¢/H"Uoq :

dUsg¢, 30
ABMAA = AA = 3; therefore, use Figure 69
H*Uo; 10

(2) Find H"Uo¢/g TA2U

H*Uo;, 10
ARAAAA = AAAAAAAAAAAA = 0.0049
g TA2U (32.2)(8)A2U

(3) From Figure 69, for cot [theta] = 1.5 and H"Uo¢/g TA2U =
0.0049:

R
AAAAA = 1.26
H"Uo¢,

(4) Using Equation (3-2), find R:

R = (H"Uo¢)(R/H"Uo¢)
R = (10) (1.-26) = 12.6 feet
R =12.6 feet

Note: To obtain the elevation of the structure required to
prevent overtopping, add the value of runup, R, to the
water level used in the calculation.

(b) Structure fronted by horizontal bottom; dUs;/H"Uo; < 3 and/or
1.5 > / = cot [theta] > / = 5. Find the relative runup, R/H"Uo;, as a
function of the cotangent of the structure slope, cot [theta], and of the
deepwater wave steepness, H"Uo¢ /g TA2U, from Figure 72 for dUs¢/H"Uo¢ < / =
3. The rough-slope runup correction factor, r, is 0. 60, and the runup scale-
effect correction factor, k, is 1.00.

R = (H"Uo¢)R/H"U0) () (K)
G-3)
R = (H"Uo¢) (R/H*Uo¢) (0.60)

(c) Structure fronted by 1:10 slope; dUs¢i/H"Uo¢ < / = 3. If the
structure is fronted by a 1:10 slope with the slope length, *I, equal to or
greater than one-half of the wavelength, L, (*1 >/ = 0.5 L), where L is the
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wavelength at the toe of the 1:10 slope, find the relative runup, R/H"Uo;, as
a function of the cotangent of the structure slope, cot [theta], and of the
deepwater wave steepness, H"Uo¢/g TA2U, from Figures 73 through 76 for
relative depths of dUs¢/H"Uo¢; = 0.6, 1.0, 1.5, and 3, respectively. The
rough-slope runup correction factor, r, is 0. 60, and the runup scale-effect
correction factor, k, is 1.00; Equation (3-3) is used to calculate runup, R.

(d) Structure fronted by 1:10 slope; dUs¢;/H"Uo; > 3. For a
relative depth of dUs;/H"Uo; > 3, the bottom is considered as horizontal and
Figures 77 and 78 should be used. The rough-slope runup correction factor, r,
is 0.60, and the runup scale-effect correction factor is 1.00; Equation (3-3)
is used to calculate runup, R.

(e) Structure fronted by 1:10 slope; d = 0. If the toe of
structure slope is at d = 0, then the relative runup, R/H"Uo;, can be found
in Figures 79, 80, or 81 for d/H"Uo; (rather than dUs¢/H"Uo¢) equal to 3.0,
5.0, and 8.0, respectively; the depth, d, is taken as the depth at the toe of
the 1:10 slope. The rough-slope runup correction factor, r, is 0.60, and the
runup scale-effect correction factor, k, is 1.00; Equation (3-3) is used to
calculate runup, R.

EXAMPLE PROBLEM 13
Given: a. The wave height at the structure toe, H = 2. 75 feet
b. Water depth at structure toe, dUs; = 6 feet
c. Wave period, T = 3 seconds
d. Structure slope, cot [theta] = 1.5
e. The bottom slope is horizontal.

Find: Runup for a quarrystone revetment.

Solution: (1) Find H"Uo¢:

LUo¢ = (g/2[pi]DTA2U = (32.2/2[pi])(3)= 46.1 feet
dUsg¢, 6

AAAA = AAAA = 0.130

LUo;, 46.1

From Figure 2 for dUs¢/LUo¢ = 0.13:

H
AAAAA = 0.92
H"Uo¢,
H 2.75
H"Uo; = AAAA = AAAA = 2.99; use 3.0 feet
0.92 0.92

(2) Find dUs¢/H"Uo¢:

dUs; 6
AAAA = A = 2; therefore, use Figure 72 (for dUs¢/H"Uo; < / = 3.0)
H*Uo¢ 3
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Revetment With Water Depth at Toe, dUs¢; = 0.0, and
Relative Depth at Toe of 1-on-10 Bottom Slope, d/H"Uo¢; =
3.0]
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Revetment With Water Depth at Toe, dUs¢; = 0.0, and
Relative Depth at Toe of 1-on-10 Bottom Slope, d/H"Uo¢; =
5.0]
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EXAMPLE PROBLEM 13 (Continued)
3) Find H"Uo¢/g TA2U:
H*Uog, 3
= AAAAAAA AAAAAAAAAAAA = 0.0104
g TA2U  (32.2)(3)A2U

(4) From Figure 72 for cot [theta] = 1.5 and H"Uo¢/g TA2U =

0.0104:
R
AAAAA = 1.80
H"Uo¢,

(5) Using Equation (3-3), find R:

R = (H"Uo¢)(R/H"U0¢) (0.60)
R = (3)(1.80)(0.60) = 3.24 feet
R = 3.2 feet

EXAMPLE PROBLEM 14

Given: a. The equivalent unrefracted deepwater wave height,
H"Uo; = 6 feet
b. Water depth at structure toe, dUs; = 15 feet
c. Wave period, T = 5 seconds
d. Structure slope, cot [theta]
e. Slope in front of structure,
*1 = 100 feet

1.5

m 1:10 for slope length,

Find: Runup for a quarrystone revetment.

Solution: (1) Find L :
LUo¢ = (g/2[pi]DTA2U = (32.2/2[pi])(5)A2U = 128 feet
(2) Determine depth at toe of 1:10 slope:
d = dUs¢ + *1Umg,

1
15 + (100)(AA) = 25 feet
10

o
1

(3) Find d/LUo¢:

d 25
ARAA = AAA = 0.195
LUo;, 128

(4) From Figure 2 for d/LUo; = 0.195:
d

A =0.22



EXAMPLE PROBLEM 14 (Continued)

d 25
L = AAAA = AAAAAA = 114 feet
0.22 0.22
(5) Determine if 0. 5 L:

0.5 L = 57 feet
*] = 100 feet
THEREFORE: *I >/ = 0.5 L

(6) Determine dUs¢/H"Uog :

dUs¢ 15
AAAA = AA = 2.5
H*Uo;, 6

dUs¢/H"Uo¢, = 2.5 < 3 and *1 > / = 5 L; therefore, use Figures 73
through 76

(7) Find H Uoi/g TA2U:

H*Uog, 6

ARAAAAA = AAAAAAAAAAAAA = 0.0075
g TA20  (32.2) (5)A2U

(8) Interpolate between Figures 75 and 76 to find R/H"Uo,

for H"Uo¢/g TA2U = 0.0075: 2}
R

AAAAA = 2. 03

H"Uo¢,

(9) Using Equation (3-3), find R:

R = (H"Uo¢) (R/H"Uo¢) (0.60)
R = (6) (2.03) (0.60) = 7.31 feet
R = 7.3 feet

(3) Case 2: Embankment or Revetment, Concrete Armor. Runup on
revetments protected by concrete armor units is determined from the appro-
priate smooth-slope curvEs, Figures 72 through 81, for the appropriate
dUs¢/H"Uo¢,, cot [theta], and H"Uo¢/g TA2U. The rough-slope runup correction
factor, r, is found in Table 6 for special concrete shapes. The runup
scale-effect correction factor, k, is equal to 1.03.

R

(H"Uo¢) (R/H"Uo¢) (r) (k)

(H*Uo¢) (R/H"Uog) (r) (1.03)

(3-4)
R

WHERE: r is found in Table 6



TABLE 6
Rough-Slope Runup Correction Factor, r, for Concrete Armor Units
UAAAAAAAAARAAAAARAAAAAAAAAARAAAAARAAAAARAAAAARAAAAAAAAAARAAAAARAAAAARAAAARRA

3 Number of Structure 3
3Unit Layers Placement r Slope 3
3 (cot [theta]) 3
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Spolos . . . . . . . 2 Random 0.45 1.3 to 3.0 3
3 3
SModified cube . . . 2 Random 0.48 1.3 to 3.0 3
3 1 Uniform 0.62 1.5 3
3 1 Uniform 0.73 2.0 3
3 1 Uniform 0.55 3.0 3
3 3
3Quadripod . . . . . 2 Random and 3
3 uniform 0.51 1.3 to 3.0 3
3 3
3Tetrapod. . . . . . 2 Random 0.45 1.3 to 3.0 3
3 2 Uniform 0.51 1.3 to 3.0 3
3 3
STribar. . . . . . . 2 Random 0.45 1.3 to 3.0 3
3 1 Uniform 0.50 1.3 to 3.0 3
3 3
3Gobi blocks . . . . 1 Uniform 0.93 1.3 to 3.0 3
3 3
3Stepped slopes. . . N.A. Vertical risers 0.75 1.3 to 3.0 3
3 Curved risers 0.86 1.3 to 3.0 3

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
(STOA, 1979)

C

EXAMPLE PROBLEM 15

Given: a. The equivalent unrefracted deepwater wave height,
H"Uo; = 10 feet
b. Water depth at structure toe, dUs; = 30 feet
c. Wave period, T = 8 seconds
d. Structure slope, cot [theta] = 1.5

Find: Runup for a revetment armored with two layers of randomly
placed tetrapods.

Solution: (1) Find dUs¢/H"Uoq :

dUs; 30
AAAA = AA = 3: therefore, use Figure 72
H"Uo¢ 10

(2) Find H*Uo¢/g TA2U:

H*Uo;, 10

ARAAAA = AAAAAAAAAAAAAA = 0.0049
g TA2U  (32.2) (8) A2U
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EXAMPLE PROBLEM 15 (Continued)

(3) From Figure 72 for cot [theta] = 1.5 and HUo;/g TA2U =
0.0049:

R

AAAAA = 1.90
H"Uo¢,

(4) From Table 6 for tetrapod armor units, randomly placed: r =
0.45

(5) Using Equation (3-4), find R:

R = (H"Uo0¢)(R/H"U0¢)(r)(1.03
R = (10)(1.9)(0.45)(1.03) = 8.81 feet
R = 8.8 feet

Compared to 12.6 feet for the quarrystone revetment in Example
Problem 2, the tetrapod armor units reduce the runup by 30
percent.

(4) Cases 3, 4, and 5: Breakwater, Rubble-Mound. Wave runup on a
rubble-mound breakwater is a function of the height of the impermeable core
above the bottom, as well as of the parameters affecting runup on an
embankment. The first step is to determine if the structure has a low,
medium, or high core. The classification of core height is given in Table 7.
Also to be found in Table 7 i1s the subsection that applies to each core
height. The parameter, hUc¢, is the height of the core above bottom.

TABLE 7
Classification of Relative Core Height, hUc¢/dUsg
UAAAAAAAAARAAAAARAAAARAAAAARAAAAARAAAAARAAAAARAAAAARAAAARAAAAARAAAAARAAAARRA

2Classification = Relative Core Height Case  Subsection . 2
Slow . . . . . . hUc¢/dUs;, < / = 0.75 3 3.4.b.(4) (@) 3
3 3
3Medium. . . . . 0.75 < hUc¢/dUs¢ < 1.1 4 3.4.b.(4)(b) 3
3 3
3High. . . . . . hUc¢/dUse, > / = 1.1 5 3.4.b.(4)(c) 3

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU

(a) Case 3: low core height: hUc¢/dUs¢ < / = 0.75. IFf dUs¢/H"Uo¢>
/ =3 and 1.25 < / = cot [theta] < /7 = 5, find R/H"Uo¢;, from Figure 82, 83, or
84. The rough-slope runup correction factor, r, is 1.00, and the runup scale-
effect correction factor, k, is 1.06.
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FIGURE 82
Relative Runup, R/H', for a Rubble-Mound Breakwater for Relative
o 1
Depth, dS/HO = 3.0




for Relative Depth, dUs¢/H"Uo¢ = 3.0
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) FIGURE 83
Rélative Runup, R/H', for a Rubhle-Mound Breakwater for Relative
Depth, dS/H{; = 5,0



for Relative Depth, dUs¢/H"Uo¢ = 5.0
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R (H"Uo¢) (R/H"U0¢) (r) (K)

(H*U0¢) (R/ZH"U0¢) (1.06)

(-5

R

IT dUs¢/H"Uo¢ < 3 and/or 1.25 > cot [theta] > 5, find the rough-slope
runup correction factor, r, from Table 8. The runup scale-effect correction
factor, k, is 1.06. Then the runup is determined for the appropriate smooth-
slope curve chosen from Figures 72 through 75. If 1.5 < dUs¢/H"Uo¢ < 3,
interpolate between Figures 75 and 76 in order to determine runup.

R = (H"Uo¢) (RZH"Uos) (r) (K)
(3-6)
R = (H"Uo¢) (R/H"Uos) (r) (1.06)

WHERE: r is found in Table 8

TABLE 8
Rough-Slope Runup Correction Factor, r,
for a Rubble-Mound Breakwater
UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ;
3 Structure Slope r
3 (cot [theta])
AAAAAAAARAARAAAAAAAAAARAARAAAAAAARAARAAAAAAAARAA

YW oWe

3 1.25 0.57 3
3 1.50 0.45 3
3 2.00 0.44 3
3 2.50 0.42 3
3 3.00 0.44 3
3 4.00 0.48 3
3 5.00 0.48 3

C

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
(STOA, 1979)

EXAMPLE PROBLEM 16

Given: a. The equivalent unrefracted deepwater wave height, H"Uo; = 8 feet
b. Water depth at structure toe, dUs; = 40 feet
c. Wave period, T = 5 seconds
d. Structure slope, cot [theta] = 1.5
e. Height of core, hUc; = 28 feet

Find: Runup for a quarrystone breakwater.

Solution: (1) Determine relative core height, hUc¢/dUs¢:
hUc; 28
AAAA = AA = 0.7
dUs¢ 40

From Table 7: relative core height is low.
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EXAMPLE PROBLEM 16 (Continued)

(2) Find dUs¢/H"Uo¢:

dUs¢ 40
AMAAA = AA = 5
H*Uo;, 8

dUs¢/HUo¢, > / = 3 and 1.25 < / = cot [theta] < / = 5; therefore,
use Figure 82, 83, or 84

(3) Find HUo¢/g TA2U:

H'UO& 8
ARARKA = AAMAAAAARAMA = 0.0099
g TA20  (32.2)(5)A2U

(4) From Figure 83 for cot [theta] = 1.5 and HUo;/g TA2U =
0.0099:

R

AAAAA = 0.78
H"Uo¢,

(5) Using Equation (3-5), find R:

R = (H"Uo0¢)(R/H"U0¢) (1.06)
R = (8) (0.78) (1.06) = 6.61 feet
R = 6.6 feet

EXAMPLE PROBLEM 17

Given: a. Equivalent unrefracted deepwater wave height,
H"Uo; = 8 feet
b. Water depth at structure toe, dUs; = 20 feet
c. Wave period, T = 5 seconds
d. Structure slope, cot [theta] = 2.0
e. Height of core, h = 15 feet
f. Structure situated on flat bottom.

Find: Runup for a quarrystone breakwater.

Solution: (1) Determine relative core height, hUc¢/dUs;:
hUc; 15
AAAA = AA = 0.75
dUs¢ 20

From Table 7: relative core height is low
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EXAMPLE PROBLEM 17 (Continued)

(2) Find dUs¢/H"Uo¢:

dUsg¢, 20
AAAAA = AA = 2.5
H*Uo;, 8

dUs¢/H"Uo¢, < 3 and 1.25 > cot [theta] > 5; therefore, choose
figure to use from Figures 72 through 75.

Since structure is on flat bottom, use Figure 72.
(3) Find H"Uo¢/g TA2U:

H"Uo¢, 8

AAAAAA = AAAAAAAAAAAA 0.0099

g TA2U (32.2)(5)A2U

(4) From Figure 72, for cot [theta] = 2.0 and HUo¢/g TA2U=
0.0099:

R
AAAAAA = 1.85
H"Uo¢,
(5) From Table 8 for cot [theta] = 2.0: r = 0.44

(6) Using Equation (3-6), find R:

R = (H"Uo0¢)(R/H"U0¢) (r)(1.06)
R = (8)(1.85)(0.44)(1.06) = 6.90 feet
R = 6.9 feet

(b) Case 4: medium core height: 0.75 < hUc¢/dUs¢, < 1.1. Find

R/H"Uo¢ from Figures 72 through 78 for the appropriate dUs;/H"Uo; and bottom
configuration. The rough-slope runup correction factor, r, is 0.52 and the
runup scale-effect correction factor, k, is 1.06.

R = (H"Uo¢) (R/ZH"U0¢) () (k)

R = (H"Uo¢) (R/H"Uo¢)(0.52) (1.06)

G-7

EXAMPLE PROBLEM 18

Given: a.
b.
C.
d.
e.

The equivalent unrefracted deepwater wave height, H"Uo; = 10 feet
Water depth at structure toe, d = 50 feet

Wave period, T = 8 seconds

Structure slope, cot [theta] = 2.5

Height of core, h = 43 feet
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EXAMPLE PROBLEM 18 (Continued)

Find: Runup for a quarrystone breakwater.

Solution: (1) Determine relative core height, hUc¢/dUs;:
hUc; 43
AAAA = AA = 0.86
dUs¢ 50

From Table 7: relative core height is medium

(2) Find dUs¢/H"Uo¢ :

dUsg¢, 50
AMAAA = AA = 5
H*Uo:; 10

dUs¢/H"Uo¢, = 5; therefore, use Figure 77
(3) Find H"Uo¢/g TA2U:

H*Uo;, 10
ARAAAA = AAAAAAAAAAAAAA = 0.0049
g TA2U  (32.2)(8) TA2U

(4) From Figure 77 for cot [theta] = 2.5 and H"Uo¢/g TA2U =
0.0049:

R

AAAAA = 2.00
H"Uo¢,

(5) Using Equation (3-7), find R:

R = (H"Uo¢) (R/H"Uo¢) (0.52) (1.06)
R = (10) (2.0) (0.52) (1.06) = 11.0 feet
R = 11.0 feet

(c) Case 5: high core height. Find R/H"Uo; from Figures 72
through 78 for the appropriate dUs¢/H"Uo; and bottom configuration. The
rough-slope runup correction factor, r, is 0.60, and the runup scale-effect
correction factor, k, is 1.00.

R (H"Uo¢) (R/H"Uo¢) (r) (k)

(H"Uo¢) (R/H"Uog) (0.60)

(3-8)
R
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EXAMPLE PROBLEM 19

Given: a. The equivalent unrefracted deepwater wave height, H"Uo; = 20 feet
b. Water depth at structure toe, dUs;= 60 feet
c. Wave period, T = 12 seconds
d. Structure slope, cot [theta] = 1.5
e. Height of core, hUcs;= 72 feet
Find: Runup for a quarrystone breakwater.
Solution: (1) Determine relative core height, hUc¢/dUs; :
hUc;, 72
AAAA = AA = 1.2
dUs¢ 60

From Table 7: relative core height is high

(2) Find dUs¢/H"Uo¢:

dUsg¢, 60
AAAAA = AA = 3.0
H*Uo:, 20

dUs¢/H"Uo¢, = 3.0; therefore, use Figure 72
(3) Find H"Uo¢ /g TA2U:

H*Uo;, 20
ARAAAA = AAAAAAAAAAAAAA = 0.0043
g TA2U0  (32.2) (12)A2U

(4) From Figure 72 for cot [theta] = 1.5 and H"Uo¢/g TA2U =
0.0043:

R

AAAAA = 2.05
H"Uo¢,

(5) Using Equation (3-8), find R:

R = (H"Uo¢) (R/H"Uo¢) (0.6)
R = (20) (2.05) (0.60) = 24.6 feet
R = 24.6 feet

(5) Case 6: Breakwater, Concrete Armor. Find the relative runup,

R/H"Uo¢, on a smooth slope in Figures 72 through 78 for the appropriate
dUs¢/H"Uo¢, and bottom configuration. Find the rough-slope runup correction
factor, r, from Table 6. The runup scale-effect correction factor, k, 1is

1.03.
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R = (H"Uo¢) (RZH"U0¢) () (k)

R = (H"Uo¢) (R/H"Uos) (r)(1.03)

(G-9)

WHERE: r is found in Table 6
EXAMPLE PROBLEM 20
Given: a. Equivalent unrefracted deepwater wave height, H"Uo; = 20 feet
b. Water depth at structure toe, dUs;= 60 feet
c. Wave period, T = 12 seconds
d. Structure slope, cot [theta] = 1.5
e. Height of core, hUc; = 72 feet

Find: Runup for a breakwater armored with one layer of uniformly placed
tribars.

Solution: From Example Problem 19: R/H"Uo¢; = 2.05
From Table 6: r = 0.50

Using Equation (3-9), find R:

R = (H"Uo0¢)(R/H"U0¢) (r)(1.03)
R = (20)(2.05)(0.50)(1.03) = 21.1 feet
R =21.1 feet

Note: Runup is reduced approximately 14 percent by using tribars
instead of quarrystone.

(6) Case 7: Vertical Structures. Wave runup on a smooth-faced
vertical structure located on a horizontal bottom for a nonbreaking or
nonbroken wave is essentially equal to the incident wave height, HUi;. Waves
in shoaling water have nonlinear asymmetry in that the crest height is
greater than the trough depression. This, in effect, raises the height of the
mean water level at the wall by an amount, hUo¢, above the still water level.
Runup, R, is calculated from the equation:

R = hUo¢ + HUi¢ (3-10)
WHERE: R = runup

hUo¢ = amount by which the mean water level at the wall is raised
above still water level

HUi¢ = incident wave height at structure toe (as determined by the
linear shoaling coefficient)

26.2-126



The value of hUo¢ is determined by first finding hUo¢i/H = hUo¢/HUi¢ From
Figure 85. HUi¢ is calculated from a given H"Uo¢ by First determining hUo¢
from H*Uo¢ = HUo¢ KUR¢; (linear shoaling) for a given KUR; and then using
Figure 2 to find H/H"Uo¢; for the calculated value of dUs¢/LUo .

This procedure is not applicable if the wave has broken.

EXAMPLE PROBLEM 21

Given: a. Equivalent unrefracted deepwater wave height, H"Uo; = 5 feet
b. Water depth at structure toe, dUs¢;= 15 feet
c. Wave period, T = 4 seconds
d. Refraction coefficient, KUR; = 1.0

Find: The runup on a smooth-faced vertical wall.

Solution: (1) Find HUog:

H"Uo¢ = hUc¢KUR,

H=Uog, 5
HUo; = AAAAA = AAA
KUR¢, 1.0

HUo; = 5.0 feet

(2) Find dUs¢/LUo¢:

LUo¢ = (g/2 [pi]) TA2U = (32.2/2 [pi])(4)A2U = 82.0 feet
dUs¢ 15

AAAA = AAAA = 0.183

LUo, 82.0

(3) From Figure 2 for dUs¢/LUo; = 0.183:
H/H"Uos = 0.92

H

0.92 H*Uog

H

(0.92) (3

H = HUi¢ = 4.6 feet

(4) Find H/dUs¢: H = HUi¢:
HUi; 4.6

AAAA = AAA = 0.31

dUs¢ 15

(5) Find H/TA2U; H = HUi¢:
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EXAMPLE PROBLEM 21 (Continued)
HUi; 4.62
A" A" A" A" = A" A" A" A" A" A" = 0.29
TA2U  (4)A2U

(6) From Figure 85 for H/dUs¢; = 0.31 and H/TA2U = 0.29; H = HUi¢:

hUo¢,

AAAA = 0.28

HUi¢,

hUo;, = 0.28 HUiq

hUo;, = (0.28) (4.6) = 1.29

hUos= 1.3 feet

(7) Using Equation (3-10), find R:

R = hUo¢+ HUi¢
R=1.3+ 4.6 =5.9 feet
R = 5.9 feet

For shallow-water application, where the wave may break, relative wave
runup, R/H"Uo¢, for smooth-faced vertical structures and recurved seawalls
fronted by nonhorizontal bottom slopes can be found in Figures 86, 87, and
88. The rough-slope runup correction factor, r, and the runup scale-effect
correction factor, k, are both 1.00.

R = (H"Uo¢) (R/H"Uo¢) () (k)

R = (H"Uo¢) (R/H"Uo¢)

(3-11)

EXAMPLE PROBLEM 22

Given: a. The equivalent unrefracted deepwater wave height, H"Uo; = 3 feet
b. Water depth at structure toe, dUs;= 4.5 feet
c. Wave period, T = 3 seconds

Find: Runup on recurved Galveston-type seawall.

Solution: (1) Find dUs¢/H"Uoq :

AAAAA = A =1.5

dis¢ 4.5
H*Uo, 3

(2) Find H"Uo¢ /g TA2U:
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EXAMPLE PROBLEM 22 (Continued)

H*Uog, 3
ARAAAA = AAAAAAAAAAAAA = 0.0104
g TA20  (32.2) (3)A2U

(3) From Figure 88 for dUs¢/H"Uo; = 1.5 and H"Uo¢/g TA2U =
0.0104:

R

AAAAA = 0.54
H"Uo¢,

(4) Using Equation (3-11), find R:

R = (H"Uo¢)(R/H"Uo¢)
R =(3) (0.54) = 1.6 feet
R =1.6 feet

(7) Case 8: Beach Slopes. Wave runup on sloping sandy beaches can be
calculated by using the smooth-slope curves in Figures 72 through 81 to find
R/H"Uo¢, and by applying the appropriate runup scale-effect correction
factor, k, from Figure 89. The rough-slope runup correction factor, r, is
1.00.

R = (H"Uo¢) (RZH"U0¢) () (k)

R = (H"0og) (R/H"Uo¢) (K)

(3-12)

WHERE: k is found from Figure 89
EXAMPLE PROBLEM 23
Given: a. Equivalent unrefracted deepwater wave height, H"Uo; = 5 feet
b. Water depth at toe of slope, dUs¢;= 15 feet
c. Wave period, T = 3 seconds
d. Beach slope, cot [theta] = 20
Find: Runup on beach face.
Solution: (1) Find dUs¢/H"Uoq :
dUs¢ 15
AAAAA AA = 3; therefore, use Figure 72
H*Uo; 5
(2) Find HUo¢/g TA2U:
H"Uo¢, 5
AAAAAAA = AAAAAAAAAAAAA = 0.0173
g TA2U (32.2) (3)A2U
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EXAMPLE PROBLEM 23 (Continued)

(3) From Figure 72 for cot [theta] = 20 and H"Uo¢/g TA2U =
0.0173:

R

AAAAA = 0.15
H"Uo¢,

(4) From Figure 89 for cot [theta] = 20:
k =1.00

(5) Using Equation (3-12), find R:

R = (H"Uo¢) (R/H"Uo¢) (k)
R = (5) (0.15) (1.00) = 0.750 feet
R = 0.75 feet

(8) Special Precautions. Runup calculations are usually made for the
significant wave height. It should be borne in mind that larger waves can
impinge on the structure if the height is not limited by water depth. The
runup that 1 percent of waves exceed can be significantly more than the runup
due to the significant wave. Care should be exercised when designing the
structure to determine the consequences of minor and occasional overtopping.
The significant wave is generally adequate for most design situations. All
beach slopes and structures do not necessarily fit the design curves given
above. Volume 11 of the Shore Protection Manual (1977) should be consulted to
determine the runup over composite slopes.

5. WAVE TRANSMISSION.

a. Design Parameters. Breakwaters are designed to attenuate waves
propagating into the lee of the structure. Waves incident to a breakwater can
be dissipated on, transmitted through, or transmitted over the structure. The
amount of wave transmission depends on the incident wave height, HUi;, the
wave period, T, the water depth, dUs;, the breakwater type (such as vertical-
wall, vertical-thin wall, composite breakwater, wave-baffle, and rubble-
mound), breakwater permeability, and breakwater geometry (crest height, hUs¢,
crest width, b, and slope, cot [theta]).

The ratio of the transmitted, HUt;, to incident, HUi¢;, wave height is the
transmission coefficient, KUtg.

KUt; = HUt¢/HUI (3-13)
WHERE: KUt¢ = transmission coefficient

HUt; = transmitted wave height

HUi¢; = incident wave height
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(1) Vertical-Wall, Vertical-Thin Wall, or Composite Breakwaters.
These breakwaters are impermeable and transmission occurs by overtopping. The
transmission is primarily a function of the incident wave height, HUi;, the
water depth at the structure, dUs;, the crest width, b, the slope-protection
depth, dUl;, and the structure height, hUs;. Figures 90 and 91 are used to
determine transmission coefficients for impermeable structures. These figures
are applicable over the range 0.015 < / = dUs¢/g TA2U < / = 0.0793.

EXAMPLE PROBLEM 24

Given: a. Deepwater significant wave height, HUo;,= 7 feet
b. Refraction coefficient, KUR; = 0.9
c. Wave period, T = 4 seconds
d. Water depth, dUs; = 25 feet

Find: Based on significant wave, determine the height of a thin-wall
breakwater necessary to reduce the waves in its lee to 1.5 feet.

Solution: (1) Find H"Uo¢:
H*Uo¢ = HUo¢ KUR¢ = (7)(0.9) = 6.3 feet

(2) Find dUs¢/LUo¢ :

LUo¢ = (g/2[pi]) TA2U = (32.2/2 [pi] )(4)A2U = 82.0 feet
dUs¢ 25

AAAA = AAAA = 0.305

LUo, 82.0

(3) From Figure 2 for dUs¢/LUo; = 0.305:

H/H"Uo¢ = 0.95

HUo¢ = (0.95)(6.3) = 6.0 feet

H = HUi¢ = 6.0 feet

(4) The desired transmitted wave height, HUt; = 1.5 feet.
HUL,

AAAA
HUi¢,

KUt

1.5

KUt = AAAA = 0.25
6.0

(5) From Figure 90, using curve 1 and KUt; = 0.25:
(hUs¢ - dUs¢)/HUi¢ = 0.5
(hUs¢ - dUs¢) = 0.5 HUig
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TRANSMISSION COEFFICIENT, Kp=Hy/H;
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(AFTER SHORE PROTECTION MANUAL, 1977)

FIGURE 90
Transmission Coefficient, Kt’ Eor Impermeable Structures
(0.015 < ds/g T < 0.0793)

Structures (0.015 < / = dUs¢/g TA2U < / = 0.0793)]
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FIGURE 91
Transmission Coefficient, Kt’ Eor Impermeable Structures
(0.015 édS/g T = 0.0793)

Structures (0.015 < / = dUs¢/g TA2U < / = 0.0793)]
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EXAMPLE PROBLEM 24 (Continued)

hUs¢ = 0.5 HUi¢ + dUs¢

hUs¢,

(0.5)(6.0) + 25 = 28 feet
hUs; = 28 feet above the bottom

(2) Wave-Baffle Breakwaters. A wave-baffle breakwater consists of a
pile-supported impermeable barrier extending below the surface, but not
extending down the entire depth of the water column. Prediction of the wave-
transmission coefficient for this structure can be made using Figure 92; this
figure predicts the transmission coefficient, KUt; , as a function of the
depth to wavelength ratio, dUs¢;/L, and of the depth of baffle below the
surface to depth ratio, h/dUs;. Figure 92 accounts for the transmission of
waves under the structure. If the wave baffle is of low height, then wave
overtopping may occur in addition to transmission under the structure. In
this case, complex interaction between the waves and the structure precludes
easy determination of wave transmission, and a physical model study would be
necessary.

(3) Rubble-Mound Breakwaters. Rubble-mound breakwaters are rough and
permeable, and wave energy is dissipated on the front slope, transmitted over
the structure, and transmitted through the voids of the structure. The
transmitted wave height is primarily a function of the iIncident wave steep-
ness, HUi¢s/g TA2U, the ratio of water depth to structure height, dUs¢/hUs;,
the ratio of incident wave height to water depth, hUs;/dUs;, the structure
permeability, and the materials making up the breakwater under consideration.
Other parameters of secondary importance include type of armor unit and
placement, crest width, structure slope, and relative depth, dUs;/g TA2U. The
problem is complex and it is generally necessary to resort to a physical or
mathematical model to determine wave-transmission characteristics iT the
design situation is critically dependent upon transmitted waves. The pro-
cedures described subsequently can be used as a First approximation. These
procedures are based on methods given in Seelig (1980) which use a computer
model for the specific breakwater cross sections shown in Figu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>